Short paper

ODSA:

James Wagner
DePaul University
jwagne32@depaul.edu

Tanu Malik
DePaul University
tanu@depaul.edu

ABSTRACT

Applications in several areas, such as privacy, security,
and integrity validation, require direct access to database
management system (DBMS) storage. However, relational
DBMSes are designed for physical data independence, and
thus limit internal storage exposure. Consequently, appli-
cations either cannot be enabled or access storage with
ad-hoc solutions, such as querying the ROWID (thereby
exposing physical record location within DBMS storage but
not OS storage) or using DBMS “page repair” tools that
read and write DBMS data pages directly. These ad-hoc
methods are difficult to program, maintain, and port across
various DBMSes.

In this paper, we present a specification of programmable
access to relational DBMS storage. Open Database Storage
Access (0DSA) is a simple, DBMS-agnostic, easy-to-program
storage interface for DBMSes. We formulate novel opera-
tions using 0DSA, such as comparing page-level metadata.
We present three compelling use cases that are enabled by
0DSA and demonstrate how to implement them with ODSA.

1 INTRODUCTION

Relational DBMSes adhere to the principle of physical data
independence: DBMSes expose a logical schema of the data
while hiding its physical representation. A logical schema
consists only of a set of relations (i.e., the data). On the
other hand, a physical view consists of several objects, such
as pages, records, directory headers, etc. Hiding physical
representation is a fundamental design of relational DBM-
Ses: DBMSes transparently control physical data layout
and manage auxiliary objects for efficient query execution.
However, data independence inhibits several security and
performance applications requiring low-level storage access.
A small example is provided here, while Section 2 presents
more detailed use cases.

Example 1. Consider a bank or a hospital that man-
ages sensitive customer data with a commercial DBMS.
For audit purposes, they must sanitize deleted customer
data to ensure that it cannot be recovered and stolen.
Very few DBMSes support explicit sanitization of deleted
data (e.g., secure delete in SQLite exists but provides
no guarantees or feedback to the user)l. To programmati-
cally verify the destruction of deleted data, a DBA must

'DBMS encryption is similar in not providing any feedback. Fur-
thermore, encrypted values should still be destroyed on deletion.

© 2020 Copyright held by the owner/author(s). Published in Proceed-
ings of the 23rd International Conference on Extending Database
Technology (EDBT), March 30-April 2, 2020, ISBN 978-3-89318-
083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Alexander Rasin
DePaul University
arasin@cdm.depaul.edu

375

O

proceedings

Open Database Storage Access

Dai Hai Ton That

DePaul University
dtonthat@depaul.edu

Jonathan Grier
Grier Forensics
jdgrier@grierforensics.com

inspect all storage ever used by a DBMS where such data
may reside. This includes DBMS auxiliary objects such as
indexes, unallocated fragments in DBMS storage, as well
as any DBMS storage released to the OS.

Comprehensive DBMS storage-level access is an inherent
challenge due to DBMS storage management. DBMSes con-
trol allocated storage objects such as a) physical byte rep-
resentation of relations, b) metadata to annotate physical
storage of relation data, and c¢) auxiliary objects associated
with relations (e.g., indexes, materialized views). Users can
manipulate allocated objects exposed by SQL. However, as
illustrated in Example 1, the DBA may also need access
to unallocated storage objects not tracked by a DBMS
such as deleted data that lingers in DBMS-controlled files,
and DBMS-formatted pages released back to the OS and
no longer under DBMS control (e.g., files deleted by the
DBMS or OS paging files). These objects are certainly part
of the physical view and required for any storage access,
but currently not exposed by any DBMS. Vendors such as
Oracle incorporate the DBMS_REPAIR package [3], enabling
users to manually fix or skip corrupt pages, but such tools
only access DBMS-controlled storage.

Physical Data
Independence

Open Storage
Access

]

l« - Application Level - »}

|« - - Logical Level - - »

ODSA

Schema

DBMS Files

Disk Storage

System Files
(e.g., paging)

Unallocated
Disk Sectors

Figure 1: ODSA storage access.

In order to enable such security and performance appli-
cations, we present Open Data Storage Access (ODSA),
an API that provides comprehensive access to all DBMS
metadata and data in both (unallocated and allocated)
persistent and volatile storage. ODSA does not instrument
any RDBMS software; it interprets underlying data using
database carving methods [8], which we use to expose phys-
ical level details. Carving itself is insufficient because the
carved data consists of disk-level details making it diffi-
cult to program DBMS storage. 0DSA abstracts low-level
disk-level details with a hierarchical view of DBMS storage
that is familiar to most DBAs. In particular it organizes
them into pages, records, and values, which are resolved
to internal, physical addresses. ODSA also guarantees the
same hierarchy applies to multiple DBMS storage engines,
ensuring portability of programmed applications. Figure 1
shows the storage access enabled by ODSA.

10.5441/002/edbt .2020.36

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.36

The rest of the paper is organized as follows. Section 2
presents three representative uses cases that require storage-
level access. Section 3 provides an overview of how applica-
tions previously had limited access to internal DBMS stor-
age. Section 4 describes the hierarchy exposed by 0DSA and
how it provides a comprehensive view of storage. Section 5
demonstrates implementation and use of ODSA. Finally,
Section 6 discusses future work for ODSA.

2 USE CASES

This section presents three representative use cases that
require direct access to different abstractions of storage.

2.1 Intrusion Detection

A bank is investigating mysterious changes to customer
data. Unbeknownst to the bank, a disgruntled sysadmin
modified the DBMS file bytes at the file system level. This
activity bypassed all DBMS access control and logging, and
still effectively altered account balances. The sysadmin also
disabled file system journaling with tune2fs to further hide
their activity. The bank cannot determine the cause for
inconsistencies with the logs alone. Forensic analysis [7, 9]
that detects such malicious activity requires comprehensive
storage access to compare volatile storage with allocated
and unallocated persistent storage.

2.2 Performance Reproducibility

Alice, an author, wants to share her computation and data
based experiments with Bob so he can repeat and verify
Alice’s work. Out of privacy and access constraints, Alice
builds a container consisting of necessary and sufficient
data for Bob to reproduce. If the shared data is much
smaller than original DBMS file, Bob cannot reproduce
any performance-based experiment as the data layout of the
smaller data will significantly differ from the original layout.
To achieve a consistent ratio between Alice’s experiment
and Bob’s verification, data layout specification at the
record and page level must itself be ported. Currently, data
layouts as part of a shared DBMS file in a container cannot
be communicated [4].

2.3 Evaluating Data Retention

Continuing with Example 1 (Section 1), the bank validates
their compliance with data sanitization regulations (e.g,.
EU General Data Protection Regulation or GDPR [5]).
After deleting data, the bank independently validates data
destruction to ensure compliance. No data sanitization
validation guidelines for DBMSes exist beyond a complete
file overwrite [2]. This guideline is too coarse, especially for
DBMS files containing a few deleted records.

Alternatively, consider a compliance officer that has pro-
grammatic access to DBMS storage via 0DSA for validation.
The officer can easily access all unallocated storage, and de-
termine the location of deleted data that was not destroyed
(e.g., DBMS index or table file, OS paging file).

3 RELATED WORK

We describe built-in tools and interfaces supported by pop-
ular DBMSes, which provide physical storage information
at different granularities, but no comprehensive views of
storage. The ROWID pseudo-column represents a record’s

376

physical location within DBMS storage (not disk), and is
one of the simplest examples of storage-based metadata
available to users most DBMSes. Commercial DBMSes
typically provide utilities to inspect and fix page-level cor-
ruption. Examples include Oracle’s DBMS_REPAIR, Oracle’s
BBED (a page editing tool available from Oracle 7 to 10g),
and SQL Server’s DBCC CHECKDB. However, even for ac-
cessible metadata such as ROWID, built-in tools do not
help interpret its meaning; a DBA must manually make
such interpretations. Moreover, no DBMS offers access to
unallocated storage. Finally, existing tools only consider
persistent storage. 0DSA offers a universal meaning of DBMS
storage (including IBM DB2, Microsoft SQL Server, Oracle,
MySQL, PostgreSQL, SQLite, Firebird, and Apache Derby)
with support for both persistent and volatile storage.

The term carving refers to interpreting data at the byte-
level, e.g., reconstructing deleted files without the file sys-
tem. Wagner et al. previously extended carving to interpret
DBMS storage with DBCarver [8, 10, 11], retrieving both al-
located and unallocated data and metadata without relying
on the DBMS. DBCarver reads individual files or disk/RAM
snapshots and extracts data, including user data and sys-
tem metadata; it then writes data to a DB3F [12] formatted
file. This paper uses DBCarver to demonstrate the physical
information a DBMS can provide.

Raw Storage Abstraction

""""""""""" '
DBCarver | Detection

s |’ Reproducibility
Other ’
Carvers =) | ODSA Analyze Data
Retention
= [Native | O \
Other
Tools
_____________________ lications
Raw Metadata & API Appllcatlons
Storage Data Collection (Sections 4-6) (Section 2)

(Section 3)
Figure 2: ODSA completes raw database storage abstraction

in an end-to-end process for storage access.

4 OPEN DATABASE STORAGE ACCESS

Figure 2 shows how 0DSA relies on carving to access raw
storage. ODSA abstracts two details from raw storage.
First, it interprets each sequence of raw bytes and classi-
fies it into a physical storage element: Root, DBMS Object,
Page, Record, or Value. Thus, given a collection of inter-
preted raw storage elements, ODSA provides a hierarchical
access to these elements by linking them. We provide a
brief description of the hierarchy. The root level represents
the entry point from all other data to be reached. DBMSes
manage their own storage, and a disk partition consisting
of both Oracle and PostgreSQL pages, will result in two
DBMS roots. The DBMS object level calls return meta-
data, data, and statistics describing a DBMS object, such
as a list of pages or column data types. Pages are uniquely
identified by a byte offset in raw storage, rather than the
PagelD. We also do not rely on the page row directory
pointers because deletion may zero out a record’s entry.
Second, the 0DSA hierarchy hides DBMS heterogeneity
by accessing physical elements (e.g., pages, records) with
physical byte offsets, rather than DBMS-specific pointers.

#4.A. Root
class Root:
def __init__(self,
#Intttalize
def get_object_ids(self):
#Return a list of object 1ids
#Calls to Other Instance and Namespace Data
#4.B. Object
class DBMS_Object (Root):
def __init__(self, parent,
#Initialize
def get_page_offsets(self):
#Return a list of page offsets
def get_object_type(self):
#Return the object type string
def get_object_schema(self):
#Return a list of column datatypes
#4.C. Page
class Page (Object):
def __init__(self,
#Initialize
def get_record_offsets(self):
#Return a list of record offsets
def get_page_id(self):
#Return a string for page id
def get_page_type(self):
#Return a string for page node type
def get_checksum(self):
#Return a string for the checksum
def get_row_directory(self):
#Return a list of row pointers
#4.D. Record
class Record(Page):
def __init__(self,
#Initialize
def get_value_offsets(self):
#Return a list of walue positions
def get_record_allocation(self):
#Return Boolean allocation status
def get_record_row_id(self):
#Return a string for the row id
def get_record_pointer (self):
#Return a string for row pointer
#4.E. Value
class Value(Record):
def __init__(self,
#Initialize
def get_value(self):
#Return string for a data wvalue

db3f):

object_id):

parent , page_offset):

parent, record_offset):

parent, value_offset):

Figure 3: A sample set of ODSA calls.

Computing a DBMS pointer varies between vendors. For
example, Oracle incorporates FileID into index pointer
while PostgreSQL does not; index pointers in MySQL dif-
fers from both Oracle and PostgreSQL because MySQL
relies on index organized tables. Even if all vendors used
similar pointer encodings, abstraction is needed in terms
of pages since duplicate pages may exist across a storage
medium (outside of DBMS-controlled storage, such as pag-
ing files). Given Page 4 and its physical copy Page;‘, 0DSA
enables application developers to connect an index pointer
referencing Page 4 along with Page%.

Implementation. There are multiple ways to implement
the hierarchy. The 0DSA hierarchy is currently implemented
as a pure object hierarchy (Figure 3) and as a relational
schema (Figure 4). The pure object hierarchy is stored
as a JSON file in the DB3F format [12]. The relational
schema is a starting representation — it supports basic
applications and is normalized to 3NF requirements. A
relational schema is realized since application developers

ROOT

DB3F_ File | DBMS | PageSize | PageCnt | DiskImage
‘ OBJECT
DB3F_ File | ObjectID | Type | PageCnt | Schema
s B
PAGE
PageOffset | DB3F__File | ObjectID | PagelD
,,,,,,,,,,, —
J ROW_DIRECTORY
DB3F _File | PageOffset | Pointer
1
RECORD
DB3F_ File | PgOffset | RecOffset | RowID | Allocated
——————————— T
VALUE
DB3F_File | PgOffset | RecOffset | ValueOffset | Value
,,,,,,,,,,, R

377

Figure 4: The relational schema used to store ODSA data.

may prefer to access a DBMS storage with SQL rather than
calling the 0DSA directly. However, as we show in Section 5
the SQL implementation requires several joins and is quite
counter-intuitive, despite it being DBMS physical storage.

5 USING ODSA

For use cases in Section 2, two fundamental physical stor-
age access operations are finding unallocated records and
matching index pointers to records. ODSA calls enable these
operations and show how these operations are achieved in
Python and SQL, respectively. The two implementations
are shown to contrast programmatic verbosity and main-
tainability. We focus on 0DSA access and do not consider
implementation performance.

Example 2: Find Unallocated Records. Use cases 2.1 and
2.3 require a DBA to search and retrieve unallocated
records. To retrieve unallocated records, the user must
know the carved DBMS file name and the table name
(Customer table in this example) from which unallocated
records are considered. Figure 5 finds and prints all unallo-
cated (e.g., deleted) records from the Customer table. All
ODSA calls are highlighted.

The implementation in Figure 5 uses ODSA calls to search
for unallocated records: Line 3 retrieves page offsets, which
uniquely identify pages. Line 5 then iterates through the
pages, Line 6 loads each page, and Line 7 retrieves the
record offsets for that page. Finally, Line 7 iterates through
records using their identifying offsets within a page. Line
11 retrieves the record allocation status to identify and
print unallocated records. The same search and retrieval
requires an 8-way join in SQL due to the data hierarchy:

SELECT PageOffset, RecordOffset, ValueOffset, Value

FROM Object NATURAL JOIN Page

NATURAL JOIN Record NATURAL JOIN Value

WHERE Object.DB_File = 'MyDatabasel. json'

AND Object.ObjectID = 'Customer'

AND Record.Allocated = FALSE;

1 DBRoot = odsa.Root(’MyDatabasel.json’) 1 def findIndexEntries(record, Index):

2 CustomerTable = odsa.Object(DBRoot, ’Customer’) 2 RecordPtr = record.get_record pointer()

3 PageOffsets = CustomerTable.get_page_offsets() 3 IndPageOffsets = Index.get_page offsets()

4 4

5 for PageOffset in PageOffsets: 5 for IndPageOffset in IndPageOffsets:

6 CurrPage = odsa.Page(CustomerTable, PageOffset) 6 IndPage = odsa.Page(Index, IndPageOffset)

7 RecordOffsets = CurrPage.get_record_offsets() 7 IndROffsets = IndPage.get_record_offsets()
8 8

9 for RecOffset in RecordOffsets: 9 for IndROffset in IndROffsets:

10 CurrRecord = odsa.Record(CurrPage, RecOffset) 10 IndEntry = odsa.Record(IndPage, IndROffset)
11 allocated = CurrRecord.get_record_allocation() 11 # IndEntry is a pair (Value, Pointer)
12 #print unallocated (e.g., deleted) record 12 IndexPointer = odsa.Value(IndEntry, 1)
13 if not allocated: 13 if IndexPointer == RecordPtr:

14 print CurrRecord 14 print IndEntry

Figure 5: Using ODSA to find deleted records.

Example 3: Match a Record to an Index Pointer(s). To
match a record to pointers in a DBMS object such as
an index, the user provides as input specific instances of
the record and index objects. In Figure 6, Line 5 iterates
through all index pages to determine if the input record
matches any of the index records. Recall, in an index,
records are value-pointer pairs. The code in Figure 6 de-
termines offsets of all index pages (Line 7), and for each
index page (Line 9) iterates over all index records in that
page. Lines 10 fetches the index entry and Line 12 loads
the pointer (offset 1 in value-pair) of the current index
entry. Finally, for any index pointer match to the record
pointer (Line 13), the index entry is printed.

In this example a brute-force iteration over all index
pages is necessary, i.e., the program cannot break at the
first occurrence of a match in Line 13. In practice, DBMS
indexes often contain records of entries that were deleted
or updated. For example, consider the record (42, Jane,
555-1234) in the Customer table where name column is
indexed. In addition to the expected (Jane, {PAGEID:
12, ROWID: 37}) entry in the index, the index may also
contain (Jehanne, {PAGEID: 12, ROWID: 87}) if the
customer changed their name from Jehanne to Jane (old
index entries will only be purged after the index is rebuilt).
Moreover, the index might also contain a (Bob, {PAGEID:
12, ROWID: 37}) entry if another customer named Bob
previously deleted their account, free-listing the space for
Jane’s record at the same location.

As demonstrated in Figure 6, the Python-specific imple-
mentation retrieves all records. On the contrary, matching a
record to an index in SQL requires a dynamic SQL (shown
below) in which after the customary 8-way join to find
record values, parameters of each record value must be sup-
plied to match the values. Moreover, this query assumes
that there is only one indexed column which is transpar-
ently accounted for in the abstraction of the DBMS Object
class.

SELECT V1.Value

FROM Page NATRUAL JOIN Record

NATURAL JOIN Value V1 NATURAL JOIN Value V2

AND Page.ObjectID = ? --Index name placeholder

AND V1.ValueOffset 0 --Indezed value at offset 0

AND V2.ValueOffset = 1 --Pointer is at offset 1

AND V2.Value = (SELECT Record.Pointer FROM Record

WHERE (DB_File, PageOffset, RecordOffset) =
(?, 7, ?) /*Record ID placeholders*/);

]

378

Figure 6: Using ODSA to find all index entries for one record

6 CONCLUSION

0ODSA was designed based on the principles and challenges
described in [1, 6]. In particular, it was designed to be
simple and easy-to-use by integrating the terminology used
across DBMS documentation. Classes were named based
on general concepts giving them an intuitive meaning while
abstracting DBMS-specific implementation details. 0DSA
adheres to single-responsibility principle in that calls focus
on single pieces of data and metadata. ODSA supports both
3rd party carving and built-in DBMS mechanisms should
vendors choose to expose storage. As a result, 0DSA comple-
ments physical data independence and enables simple yet
powerful implementations of a variety of applications that
require access to storage. Additional requirements such as
versioning and backward compatibility are future work.

ACKNOWLEDGMENTS

This work was partially funded by the US National Science
Foundation Grants CNF-1656268 and CNS-1846418.

REFERENCES

[1] Joshua Bloch. 2006. How to design a good API and why it
matters. In ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. 506-507.
Intl. Data Sanitization Consortium. 2019. Data Sanitization Ter-
minology. https://www.datasanitization.org/ data-sanitization-
terminology/.

Oracle. 2019. Database Administrator’s Guide: Repairing Cor-
rupted Data. https://docs.oracle.com/database/121/ADMIN/
repair.htm# ADMIN022

Quan Pham, Tanu Malik, Boris Glavic, and Ian Foster. 2015.
LDV: Light-weight database virtualization. In IEEE Interna-
tional Conference on Data Engineering. IEEE, 1179-1190.
General Data Protection Regulation. 2016. Regulation (EU)
2016/679. Official Journal of the European Union (OJ) 59,
1-88 (2016), 294.

Martin P Robillard. 2009. What makes APIs hard to learn?
Answers from developers. IEEE software 26, 6 (2009), 27-34.
James Wagner et al. 2017. Carving database storage to detect
and trace security breaches. Digital Investigation 22 (2017),
S127-S136.

James Wagner et al. 2017. Database forensic analysis with DB-
Carver. In Conference on Innovative Data Systems Research.
James Wagner et al. 2018. Detecting database file tampering
through page carving. In 21st International Conference on
Eztending Database Technology.

James Wagner, Alexander Rasin, and Jonathan Grier. 2015.
Database forensic analysis through internal structure carving.
Digital Investigation 14 (2015), S106-S115.

James Wagner, Alexander Rasin, and Jonathan Grier. 2016.
Database image content explorer: Carving data that does not
officially exist. Digital Investigation 18 (2016), S97-S107.
James Wagner, Alexander Rasin, Karen Heart, Rebecca Jacob,
and Jonathan Grier. 2019. DB3F & DF-Toolkit: The Database
Forensic File Format and the Database Forensic Toolkit. Digital
Investigation 29 (2019), S42-S50.

(2]

3

[4

5

(6

(7]

8]
[9

(10]

(11]

(12]

	ODSA: Open Database Storage AccessJames Wagner, Alexander Rasin, Dai Hai Ton That, Tanu Malik, Jonathan Grier

