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a b s t r a c t

Forensic tools assist analysts with recovery of both the data and system events, even from
corrupted storage. These tools typically rely on “file carving” techniques to restore files
after metadata loss by analyzing the remaining raw file content. A significant amount of
sensitive data is stored and processed in relational databases thus creating the need for
database forensic tools that will extend file carving solutions to the database realm. Raw
database storage is partitioned into individual “pages” that cannot be read or presented to
the analyst without the help of the database itself. Furthermore, by directly accessing raw
database storage, we can reveal things that are normally hidden from database users.
There exists a number of database-specific tools developed for emergency database re-
covery, though not usually for forensic analysis of a database. In this paper, we present a
universal tool that seamlessly supports many different databases, rebuilding table and
other data content from any remaining storage fragments on disk or in memory. We define
an approach for automatically (with minimal user intervention) reverse engineering
storage in new databases, for detecting volatile data changes and discovering user action
artifacts. Finally, we empirically verify our tool's ability to recover both deleted and
partially corrupted data directly from the internal storage of different databases.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Introduction

Because most personal and company data is stored in
digital form, forensic analysts are often tasked with
restoring digital data contents or even reconstructing user
actions based on system snapshots. The digital data re-
covery process is composed of both hardware and software
phases. Hardware techniques extract data from physically
damaged disks, while software techniques make sense of
the recovered data fragments. Our work presented here
focuses on software-based restoration techniques in the
context of relational database management systems
(DBMSes). A well-recognized forensic technique is the
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vier Ltd on behalf of DFRW
process of “file carving” that bypasses metadata and in-
spects file contents directly. If a sufficient proportion of
the file can be recovered and recognized, then the content
of the file (e.g., images or document text) can then be
restored.

It is our contention that a significant amount of data,
particularly what is referred to as Big Data, is not stored in
flat files, but rather resides in a variety of databases within
the organization or personal devices. Standard file carving
techniques are insufficient to meaningfully recover the
contents of a database; indeed, without themetadata of the
DBMS (catalog), the contents of database tables could not
be presented to the forensic analyst in a coherent form. The
work presented here thus bridges this gap by introducing a
novel database carving approach that allows us to
reconstitute database contents and reason about actions
performed by the database users.
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Our contributions

We present a comprehensive collection of techniques
for forensic analysis of both static and volatile content in a
database:

� We define generalized storage layout parameters for
parsing the raw storage (including the volatile kind) of
many different relational databases.

� We compare and contrast different storage design
decisions made by a variety of DBMSes and discuss the
resulting implications for forensic analysis.

� We present a tool that can reverse-engineer newDBMS
storage parameters by iteratively loading synthetic
data, executing test SQL commands and comparing
resulting storage changes.

� We also present a tool that, given a disk image or a RAM
snapshot can do the following:
e Identify intact DBMS pages, even for multiple

DBMSes on the same disk, for all known storage
configuration parameters.

e Recover the logical schema (SQL tables and con-
straints) and all database table rows for known
parameters (a parameter set will support several
different versions of the DBMS, depending on stor-
age changes version-to-version).

e Extract a variety of volatile data artifacts (e.g.,
deleted rows or pre-update values).

e Detect evidence of user actions such as row inser-
tion order or recently accessed tables.
Paper outline

Fig. 1 shows the high-level architecture overview. In
Section “Database storage structure” we review the prin-
ciples of page-based data storage in relational databases
and define the parameters for parsing and recovering these
pages. In the same section we also summarize important
database-specific storage structures (i.e., non-tables) and
discuss the fundamentals of volatile storage and updates. In
Section “Deconstructing database storage”, we analyze the
interesting storage layout parameter trade-offs and explain
Fig. 1. Overview of parameter detection and data analysis.
how these parameters and some user actions can be
discovered within a DBMS. Section “Experiments” reports
experimental analysis results for a variety of different da-
tabases and environment scenarios. Finally, Section
“Related work” summarizes related work and Section
“Conclusion and future work” contains the conclusions and
mentions a number of promising future work directions.

Database storage structure

The storage layer in relational databases partitions all
physical structures into uniform pages with a typical size of
4 or 8 KBytes because using a fixed page size significantly
simplifies storage and cache management. Page size can be
changed by the database administrator, but such a change
requires rebuilding data structures: page size cannot be
changed for individual tables, at a minimum it is global per
tablespace. Two different layers of metadata are involved in
database storage: the general information that describes
where and how the tables are stored and the per-page
metadata for the contents of each individual page. The
forensic challenge lies in reconstructing all surviving
database content directly from disk (or memory) image
using only the metadata included with each page.

From a high level perspective, all relational database
pages share the same general structure and break down
into three components of interest: the header, the row
directory and the row data itself. Depending on the spe-
cifics of each database, the page header stores general page
information (e.g., table or an index? orwhich table or index is
it?). This part of the overhead is found at the beginning of
the page structure. The row directory component is
responsible for keeping track of the row locations as new
rows are inserted or old rows are deleted. This row direc-
torymay be positioned either between the page header and
the row data or at the very end of the page following the
row data. The third component is the row data structure
that contains the actual page content along with some
additional overhead. Fig. 2 shows an overview of how these
structures typically interact within a page; the “other
structures” area can contain other optional elements only
relevant under specific circumstances (e.g., particular kinds
of updates). We next describe the comprehensive set of
Fig. 2. A structural overview of a database page.
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parameters used to parse table page storage for the eight
different DBMSes.
Fig. 4. Row directory structure.
Page storage layout parameters

The content of each component on a database page can
be described by a general set of parameters. Creating a
database-specific tool would have been significantly easier,
but our goal was to develop a generalized forensic approach
that can support many databases and can be easily
expanded to support even more. Once the descriptive pa-
rameters have been generated for a particular database
(Section “Parameter discovery” discusses howwe automate
this process), our code can identify pages and parse data
from a page belonging to that database. The set of param-
eters presented here has been generalized to support a
variety of DBMSes (listed in Section “Experiments”). In the
rest of this section, we explain the purpose of each
parameter for each page component. Section “Database
storage parameter trade-offs” expands on this discussion
by analyzing the significance of the parameters that affect
interesting storage and reconstruction trade-offs.

Page header parameters. The page header contains
values that define page identity and its membership in a
database structure. Fig. 3 outlines the parameter and the
corresponding page layout (the parameters are not stored
contiguously, but the addresses are fixed). The general page
identifier address locates the position of where the general
page identifier can be found e general page identifier is used
for detecting page presence in disk image and helps
determine the type of the page contents (index vs table or
other). The structure identifier address points us to the ID of
the particular structure to which the page actually belongs
(e.g., customer table). Finally, unique page identifier address
and unique page identifier size allow detecting the unique ID
of each particular database page.

Row directory parameters. The row directory maintains
an overview of where each row is stored within the page e

Fig. 4 provides a visual view of how that information is
stored. The row directory contains a list of addresses where
each address points to a particular row and may also keep
track of deletions or modifications applied by database
Fig. 3. Database page header structure.
users to each row. The row directory address determines the
location or the very first address contained within row
directory; the address size tells our tool how many bytes
there are between each subsequent directory address. In
order to deconstruct each address within row directory we
need the high value position and the address conversion
constants (Cx and Cy), which are then substituted into the
Addressn formula in Fig. 4). The high value position de-
termines which byte is the Yn parameter in that computa-
tion. The directory order sequence simultaneously
determines two things about row directory storage: the
row directory may be stored after the page header and
grow incrementally or at the end of the pagewith each new
address preceding the previously added address. Fig. 4 as-
sumes the former option, but Fig. 5 has examples of the
latter. One variable not explicitly shown in Fig. 4 is the slot
size, which determines whether the row directory is sparse
or dense. That is, the slot size value of k means that row
directory addresses only point to each kth row in the pagee
setting k to value higher than 1 reduces the row directory
overhead. Finally, the address deletion parameter tells us
whether the address of a row in the row directory will be
set to NULL when that row is deleted.

Row data parameters. The third and final component in a
database page is the actual row data, which takes up the
majority of page space. Table 1 lists the parameters used by
our recovery tool, partitioned by parameter category and
including a brief explanation. The row identifier is particu-
larly significant because it represents a database-generated
ID that does not belong to the data e if present, this iden-
tifier is generated in different ways by different DBMSes.
The column count parameters helps us parse the column
values from each row e note that column count does not
always match the actual number of columns in a table
because it may include the row identifier. As discussed in
Section “Database storage parameter trade-offs”, it is
common for string values but not other types of values to
include a size, so most of the column size settings refer to
string columns (although we did observe this for NUMBER/
DATE types in Oracle). The column directory in Table 1 is the
per-row equivalent of the row directory. While the row
directory stores addresses that locate rows in a page, the
column directory keeps track of individual value addresses
in each particular row. The raw data parameters describe



Fig. 5. Different layout choices for row data and row directory within a page.
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the location and the delimiters and any other extra over-
head present among the stored values, while the data
decoding parameters describe the size information for in-
dividual values in the row.

Fig. 5 shows a few structurally different examples of row
data layout on the page. Row data content may be placed in
the middle (between page header and row directory) or at
the end of the page. In addition to the actual raw values,
this component may contain delimiters that separate
different fields in a row, individual attribute sizes or the
total count of columns.

Non-table database structures

While much of the data content resides in tables, other
database structures can prove very useful for rebuilding
data and reasoning about volatile changes. Here we briefly
describe some of these structures although we do not
include the corresponding parsing parameters or go into
excessive detail owing to space limitations. Since data ta-
bles contain the “original” data, these auxiliary structures
are redundant in that they may be dropped without losing
any raw data; the most common reason for adding auxil-
iary structures is to shorten user query runtime.

Indexes. An index is an auxiliary structure that helps
locate rowswithin a database table. For example, consider a
customer table from SSBM benchmark by O.Neil et al.
(2009) e a table is typically sorted by customer ID or not
at all. A query searching for a particular city (city¼ 'Boston')
would have to scan the entire table, but constructing an
index on the city column can expedite the search by
building an additional structure that stores valueepointer
pairs (e.g., [Boston, Row#2], [Boston, Row#17], [Chicago,
Row#12]). Index structures are stored in database pages
with a layout similar to that of table pages described here
(in many ways, an index is a table with two special
columns).

Besides the data values, several unique pieces of infor-
mation can be extracted from indexes. First, indexes are
often automatically created for primary keys (that are part
of join connections between tables) and thus help in
reconstructing the logical table structure. Second, indexes
are stored as a tree structure Comer (1979) in order to
reduce maintenance overhead, which means values cannot
be overwritten in-place (in tables, values can sometimes be
overwritten in-place). As a result, changes made to an
indexed column (city in our example) will, on average,
remain visible (to our tool) in the index storage for much
longer than in the original table.

Materialized views (MVs). Intuitively, MVs are dynami-
cally constructed tables e not to be confused with regular
views that are simply a “memorized” query and are not
physically stored. For example, if the SQL query SELECT *
FROM Customer WHERE City ¼ 'Boston' (i.e., give me all
customers from Boston) is executed often, the database
administrator may choose to construct a BostonCustomers
MV that pre-computes the answer in order to speed up that
query. MVs are stored in the sameway as tables but provide
additional information because they are not necessarily
updated at the same time as the source table.

Transactions and logs. Transactions help manage con-
current access to the database and can be used for recovery.
For example, if a customer transfers $10 from account A to
account B, transactions are used to ensure that the transient
account state cannot be observed by the database users.
Individual changes performed by transactions are stored in
the transactional log (e.g., < A, $50, $40> , < B, $5, $15> ),
which can be used to undo or reapply the changes,
depending on whether the transaction successfully
executed COMMIT (i.e., been “finalized”).

Volatile storage

DBMSes maintain a cached set of data pages in RAM
(buffer cache) to speed up query access and updates. When
initially accessed, data pages are read into memory as-is;
however, when database users make changes (e.g., inserts
or deletes), pages would be modified in-place, creating so-
called dirty pages. Eventually, the data page is evicted
from the cache and written back to disk, replacing the
original page. Just as when storing data on disk, there is a
significant similarity in how different DBMSes handle page



Table 1
A list of parameters used to describe the row data of a database page.

Row structure Parameter Description

Row delimiter The delimiter between rows.
Row identifier Exists Is an internal row identifier present? (not part of original data)

Static size Do all row identifiers have a fixed size?
Column count Exists Is a column count is present?

Includes row identifier Does the column count include the row identifier in the count?
Delimiter A delimiter used to locate column count that follows.
Fixed position Is the column count at a fixed position?
Position Location of the column count.
Pointer exists Does a pointer locate the column count?
Pointer position Address at which the column count is located.
NULL markers Is the column count marked by NULLs?

Column size Exist Do column sizes for strings exist in the page?
In raw data Are column sizes with the raw data?
Float Are column sizes at a floating location?
Fixed position Are column sizes at a fixed location?
Position Location of the column sizes within the page.

Column directory Exists Does a column directory exist? (pointers to row attributes)
Address size The size of a column address.
Fixed position Is the column directory at a fixed position?
Succeeds column count Are the column addresses found after the column count?
Position The location of the column directory.

Raw data Extra string overhead Size of extra overhead between strings.
Fixed position Is the raw data placed at a fixed location within a page?
Succeeds column directory Does the raw data follow the column directory on page?
Delimiter A delimiter used to locate the raw data.
Succeeds header sizes Does the raw data follow the column sizes in the row header?
Position The location of the raw data.
NULL markers NULL bytes used to locate the raw data.

Data decoding String conversion constants A set of constants used to decode string size.
Numbers stored with strings Are raw numbers stored with raw strings?
Numbers static size Is the same number of bytes are used to a store a number?
Numbers size The number of bytes used to store a number.
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modification. Inserts, deletes and updates create opportu-
nities for recovering old, new or even tentative data
(transactions can be aborted). We discuss the implications
of changing data in different DBMSes in Section
“Reconstructing volatile artifacts”.

There are several distinct stages at which volatile data
changes may still be discovered. First, there are tentative
changes that are only reflected in the memory cache e if
the change is canceled, the dirty page will likely be simply
discarded. Since indexes cannot be changed in-place,
should the updated column be indexed, index changes
will persist for a longer time, even if the update was
canceled and data page discarded. Second, if the update is
confirmed (transaction COMMIT), the dirty page will
eventually be written to disk. In that case the updates will
be visible for an even longer period of time until the page is
rebuilt. Although physical data structures may be defrag-
mented manually, this process is expensive and rarely
invoked. Individual pages may also be occasionally rebuilt
by the DBMS, depending on many factors (e.g., settings of
when and how newly inserted rows can overwrite “free”
space left by deleted rows).

Deconstructing database storage

In this section, we delve into how parameter usage
varies between different DBMSes and discuss the implica-
tions of the storage design choices. Our tool currently
supports eight distinct DBMSes: Oracle, PostgreSQL,
MySQL, SQLite, Apache Derby, DB2, SQLServer and FireBird
(Section “Experiments” lists DBMS versions and parameter
settings).

Database storage parameter trade-offs

As illustrated in Table 2, the majority (six out of eight) of
the DBMSes use the structure identifier which makes it
easier to detect the presence of pages in the data image
snapshot and simplifies reassembling DB structures from
individual pages. For the remaining two databases, our tool
has to rely on the column count to reconstruct the schema of
each structure (both of these databases do use column
count). Therefore in those two databases, two tables with
identical schemas (same number of columns and all col-
umn types are the same) may be erroneously merged into
one table when rebuilt. A unique page identifier is available
in all but one of the databases, letting us match the identity
of the same page (e.g., between on-disk and in-memory). In
some cases, the unique page identifier is a composition of
different IDs (e.g., file ID plus the page ID) providing some
additional information. The choice of row directory
sequence is split (five versus three) between the different
DBMSes. The ordering of the row directory is helpful when
recovering data because it determines in which sequence
rows were initially inserted/added to the page. The pres-
ence or absence of the row identifier is evenly split between
the different databases e in Section “Reconstructing
volatile artifacts” we will also show that the presence of



Table 2
A summary of significant trade-offs made by DBMSes in page layout.
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the row identifier is particularly significant when recov-
ering data in presence of updates and deletes.

Most databases use column count (six versus two),
which simplifies the process of parsing the page. Without
the explicit column count, additional effort is required for
reconstructing table contents e in essence our tool would
need to discover the schema (see Section “Parameter
discovery”). Once the table schema has been determined,
we use structure identifier to identify its other pages e in all
of the databases we have seen so far, at least one of the
structure identifier or column count was always present.
Similarly to column count, column sizes are commonly
present in a database page (in six out of eight databases).
The use of column sizes is directly connected with presence
of a column directory structure within the raw data. Intui-
tively, explicitly storing column sizes simplifies parsing the
individual values; without sizes, databases use a directory
that specifies how to find columns within the row. This
parameter choice also coincides with the raw numbers
stored with strings decision, as having a column directory
means that the columns do not have to be stored sequen-
tially and can be interleaved. However, even if strings and
numbers are stored separately the relative ordering
(among strings and among numbers) is still preserved.
Parameter discovery

With the exception of modest user intervention, the
collection of storage parameters described in Section
“Database storage structure” is automated in our tool. We
use a combination of our own synthetically generated data
and the SSBM benchmark data to iteratively populate a
database and use the resulting storage snapshots to auto-
detect the parameter values.

Automated Parameter discovery. User intervention pri-
marily involves creating a configuration file for our tool to
define the following database characteristics: page size
setting, directory where the database file(s) are stored,
database name, and the login credentials that have suffi-
cient privileges to create tables/load data. If this is a new
DBMS, a wrapper class for that database needs to be
created, which will expose a function that can take a user
name, user password, database name and SQL file as ar-
guments, and run the SQL commands against the database.
During parameter discovery, we perform inserts individu-
ally (without a bulk loader) because such tools do not
preserve the insert order of the rows.
The SQL schema file (e.g., CREATE TABLE commands)
may require changes depending on the particular database
because, unfortunately, different data types are defined
inconsistently. For example, owing to legacy issues, Oracle
uses the VARCHAR2 type instead of VARCHAR type. Also, in
most databases implement DATE type differently (it may
include the time or a separate TIMESTAMPmay be present).
Some global settings may also need to be adjusted: MySQL
needs to have the storage engine set to InnoDB because the
old storage engine (which is no longer used in recent ver-
sions) does not use pages.

Recovering database schema. If the table schema is not
available and no column count is present in the pages,
discovering the original schema requires additional work.
Our tool approaches that problem by approximating the
schema and parsing the data under that assumption. If the
schema is incorrect, the parser eventually encounters an
error while deconstructing the data and a new schema is
attempted instead.Only three out of the eight databasesmay
require this approach and, since they all include a structure
identifier, once the schema of the page has been discovered,
all other pages from the same structure are easy to identify.

By looking at the recovered data, we can also discover
other components of the schema. We automatically iden-
tify columns that contain unique values throughout the
entire table, which tells us that the column is likely to have
a UNIQUE or a PRIMARY KEY constraint. By comparing
these columns we can identify primary keys (because
foreign keys refer to primary keys).
Reconstructing volatile artifacts

When database contents are updated, that action cre-
ates a number of opportunities. First, we can recover the
newly introduced data from inserts and updates. Second,
we can recover recently performed user actions (i.e.,
reconstructing the fact that data was inserted, deleted or
updated). Third, we can discover information about the
changes that were canceled and undone (i.e., aborted
transactions). The latter category is the most interesting,
because this information would normally be unavailable to
users even if the database were operating normally.

INSERT. Insert operations supply relatively little infor-
mation (beyond data itself) because a brand new row is
created. We can use the storage order to reconstruct the
order of insertion. For performance reasons, new rows
would typically be appended to existing (partially free)



Table 3
A summary of supported parsing functionality.

Functionality Supported DB

General page detection [1, 2, 3, 4, 5, 6, 7, 8]
Table page parsing [1, 2, 3, 4, 5, 6, 7, 8]
Index page parsing [1, 2, 3, 4]
Materialized view parsing [1, 2]
String decoding [1, 2, 3, 4, 5, 6, 7, 8]
Integer decoding [1, 2, 3, 4, 5, 6, 7, 8]
Date decoding [1, 2, 3, 4, 5, 6, 7, 8]

[1]Oracle, [2]PostgreSQL, [3]SQLServer, [4]DB2, [5]MySQL, [6]SQLite,
[7]Firebird, [8]ApacheDerby.
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database pages as they are inserted into tables. We can also
sometime determine if the entire page has been bulk
loaded based on the insert pattern; if the rows were
inserted individually, we can determine that insert order.

DELETE. The deletion of rows provides more informa-
tion. Just as file systems marks a file “deleted”, databases
would mark rows “deleted” as well. Space limitations
prohibit us from including the parameters that describe
how data is deleted in different DBMSes; however, we do
summarize what different databases actually do on delete.
When a row is deleted in Oracle and ApacheDerby, the page
header and row delimiter are marked. When a row is
deleted in PostgreSQL, the page header and raw data
delimiter are marked. When a row is deleted in MySQL,
page header and row metadata is marked. When a row is
deleted in SQLite, the page header is marked and the row
identifier is deleted. When a row is deleted in DB2,
SQLServer and Firebird, the page header is marked, and the
row directory address is deleted.

UPDATE. Although from database user perspective an
update is a combination of a delete followed by an insert,
the underlying storage changes are handled very differ-
ently. As with deletes, we summarize how updates are
handled by the different DBMSes. When a row value is
updated with a new value of a size equal to or less than the
previous entry for Oracle, SQLite, DB2, and SQLServer, the
page header is marked and the old row data is overwritten
in-place. When a row is updated to a size equal to or less
than the previous row for PostgreSQL, the page header and
raw data delimiter are marked and the old raw data is
written over.When a row is updated to a size equal to or less
than the previous row for MySQL and ApacheDerby, the
page header and the row metadata are marked and the old
raw data is written over. When a row is updated to a size
equal to or less than the previous row for Firebird, the page
Fig. 6. Sample recovered data, both fro
header is marked and the rows are reinserted. The only
behavior consistent among all databases is when a column
is updated to a size larger than the previous row value, in
which case the old row deleted and the new row is inserted.
Experiments

Our current implementation of the forensic analytic tool
supports eight different RDBMS systems under both Win-
dows and Linux OS. The breakdown of supported function-
ality is listed in Table 3 (more features are under
development). The parsing rate currently falls in the range
between 5.5 MB per second to 26.5 MB per second,
depending on the specifics of each database storage layout.
Our experiments were carried out using an Intel X3470
2.93 GHz processor with 8 GB of RAM;Windows servers run
Windows Server 2008 R2 Enterprise SP1 and Linux experi-
ments use CentOS 6.5. The cloud based instance in Experi-
ment 3 used Intel Xeon 2.5 GHz processor with 2 GB of RAM.
Windows operating systemmemory snapshots were gener-
ated using a command-line tool User Mode Process Dumper
(version 8.1). This tool outputs a processmemory dump for a
given a process identification number. Linux operating sys-
temmemory snapshots were generated by reading the pro-
cess' memory under/proc/$pid/mem. For on-disk pages we
either read the database storage files or deconstructed the
data directly from a hard drive image since we do not need
the file structure. Fig. 6 shows a few sample lines of output
produced by our tool (for a table and an MV) in Windows.

Experiment 1: Testing a variety of DBMS versions. We
begin by verifying that our carver tool supports different
version of the eight databases. In our initial experiments
we used the version that was easiest to acquire, but herewe
install and test a variety of other DBMSes, also verifying
that our tool can handle both Linux and Windows. Table 4
summarizes different versions, operating systems and
parameter settings that we used. Acquiring older versions
of some databases has proven to be challenging, we also
had difficulty installing some older software, such as
PostgreSQL 6.3.2 (circa 1999) on our servers.

For databases listed in Table 4 we verified that our
parameter discovery mechanism (described in Section
“Parameter discovery”) was able to auto-detect necessary
parameters and successfully reconstruct data from pages.
Not surprisingly, we found that for most alternate versions,
the storage layout had not changed fromversion to version.
However, we did find a number of changes in PostgreSQL
m a table page and an MV page.



Table 4
The comprehensive list of all databases used in this paper.

DBMS version Testing OS Buffer size(MB) Page size(KB)

Apache Derby 10.10 Linux 400 4
Apache Derby 10.5 Linux 400 4
DB2 Express-C 10.5 Linux 400 4
Firebird 2.5.1 Linux 400 8
Firebird 2.1.7 Windows 400 8
MySQL Server 5.1.73 Linux 800 16
MySQL Server 5.6.1 Windows 800 16
Oracle 11g R2 Windows 800 8
Oracle 12c R1 Windows 1200 8
PostgreSQL 7.3 Linux 400 8
PostgreSQL 8.4 Linux 400 8
PostgreSQL 9.3 Windows 800 8
SQLite 3.8.6 Linux 2 1
SQLite 3.8.7 Windows 2 1
SQLServer 2008

Enterprise
Windows 800 8
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7.3: the values for the general page identifier and its address,
the structure identifier position, row directory address, the
conversion constants for both row directory and string size
computation and the delimiter used to separate row data
have all changed to a different value between PostgreSQL
7.3 and PostgreSQL 8.4. Thus a variety of DBMS versions can
be handled by the same set of known parameters but if the
underlying storage changes, we need to detect the new
parameters.

Experiment 2: Rebuilding row data. In this experimentwe
evaluate our tool's ability to reconstruct data straight from
an image with DBMS pages. The process of rebuilding page
contents is the same for disk or memory (the only differ-
ence being that an in-memory copy of the page may
temporarily differ from its on-disk version due to updates).
Furthermore, the contents of the database cache buffer
provide some insight into the rows that were recently
Fig. 7. Transformation of buffer cache c
accessed by user queries, so we chose to visualize the
database cache buffer as different queries are being
executed. Fig. 7 shows the contents of the Oracle (50K
pages) cache buffer, with each dot representing a single
page and a bar chart summarizing the page counts. Initially
buffer cache is prepopulated with synthetic data from
several tables (aggregated into one bar in the bar chart),
which is shown in the first snapshot and the corresponding
bar chart below.

The second image in Fig. 7 shows cached pages after
customer and part tables were queried for a total of about
7000 disk pages (using 50 different queries) with the cor-
responding bar chart below; the following two images
show what happens after the lineorder table has been
repeatedly accessed by queries. The third snapshot shows
caching effects after executing 100 (120-page) lineorder
queries (summarized in the third bar chart) and the fourth
image shows the results of executing 200 more similar
queries which effectively overwrite the entire cache buffer,
replacing all of the previously cached data. While lineorder
queries add up to approximately (300 � 120) 36K pages,
recall that indexes are commonly used to facilitate table
access. Thus, there is a number of index pages, not shown
on the bar chart, that are present in the last snapshot
visualization.

The contents of the current buffer cache snapshot reflect
the data that was accessed recently. However, note that all
of the queries in this experiment were chosen to ensure
that their pages are fully cached. A detailed discussion
about database caching policies is beyond the scope of this
paper, but note that when a query is accessing a large
number of pages (e.g., more than one third of the total
buffer cache size), only a particular portion of the read data
is be cached. This is done to avoid evicting too many other
table's pages from buffer cache and is used to reason about
what table data was recently accessed.
ontents as queries are executed.



Table 6
A timeline for the true deletion of a deleted phone value.

Event Table Index MV

HDD RAM HDD RAM HDD RAM

T0 ✓

T1 ✓ ✗ ✓ ✓

T2 ✓ ✗ ✓ ✓ ✓

T3 ✓ ✗ ✓ ✓

T4 ✗ ✗ ✓

T5 ✗ ✓

T6 ✗

T7
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Experiment 3: Reconstructing corrupted data. We next
evaluate our forensic tool when the raw data has been
damaged as well. Using one of the popular cloud service
providers, we rented an instance and created a new data-
base using PostgreSQL e here we use a cloud service to
illustrate that data can be scavenged from neighboring or
decommissioned instances if they are not properly sani-
tized (actually trawling the instances for private datawould
be against the ToS). After loading PostgreSQL with the
SSBM benchmark (Scale4, 24M rows in the lineorder table),
we have shutdown the database and deleted (using rm) the
files that contained database storage.

Deleted disk space is marked “available” and will
eventually be overwritten by new files. We simulate this
overwrite process by performing random 1 KB writes
throughout the disk image at random. We use small writes
in order to test our tool's ability to rebuild pages when
pages are partially damaged (if the entire page is over-
written, then it is simply gone). Once a certain percentage
of 1 KB chunks waswritten to disk at random, wemeasured
the amount of data that our tool could reconstitute. Table 5
summarizes the results in terms of the recovered table
pages. The second column has the initial number of blocks,
before any page damage had taken place, and thenwe show
the distribution for 10% and 25% worth of damage. While
the exact losses vary depending on each particular table's
luck, the average number of restored pages closely matches
the amount of inflicted damage.

Finally, note that running a query in PostgreSQL after
overwriting page metadata caused The connection to the
server was lost. Attempting reset: Failed.; changing the size
of the table storage file (e.g., adding or removing a few
bytes) caused ERROR: invalid memory alloc request size
2037542769.

Experiment 4: The echoes of a database delete. In this
experiment, we test a DBMS to see when a deleted value is
really deleted. Using Oracle, we created an index on the
phone column in the customer table as well as a material-
ized view that contains a few of the customer columns,
including phone. At time T0, the phone value is present on
disk in three different pages (in the table, the index and the
MV). Table 6 shows the timeline of all three structures on-
disk (HDD) and in-memory (RAM) e a symbol means
that the phone number can also still be returned by a SQL
query and both cmark✓ and ✗ symbols mean that the value
is inaccessible by SQL but can be recovered by our tool.
The ✓ symbol means we can restore the phone number
itself and ✗ symbol means that we can both extract the
phone number and determine that it was already marked
as deleted.
Table 5
Disk data damage experiment.

Damage Dmg ¼ 0% Dmg ¼ 10% Dmg ¼ 25%

Dwdate 35(100%) 31(88.6%) 20(57.1%)
Supplier 565(100%) 455(80.5%) 326(57.7%)
Customer 1915(100%) 1559(81.4%) 1075(56.1%)
Part 8659(100%) 6969(80.5%) 4864(56.2%)
Lineorder 115K(100%) 104K(89.9%) 87K(75.2%)
Total 416K(100%) 374K(89.9%) 312K(74.9%)
� At T1 a phone row is deleted (including a COMMIT) by a
user e this causes an index page with the phone (index
values cannot be marked deleted) and a table page with
the phone marked as deleted to be cached in RAM.

� At T2 user queries the MV causing the phone page to be
cached in RAM.

� At T3 the MV is refreshed, the RAM page is removed and
newMV no longer contains the phone (fragments of the
old MV page may still be available in RAM).

� By T4 a series of queries (enough to overwrite the buffer)
are executed, evicting the index page from RAM.
Because customer table is accessed by a user, the table
page containing the deleted phone remains in RAM.

� By T5 a long series of queries is executed during which
customer table is not accessed, evicting the table page
with phone entry from RAM.

� At T6 the index is rebuilt and flushed from RAM.
� At T7 the table is rebuilt and flushed from RAM.

Thus the deleted value is truly gone by time T7 which,
depending on database activity, may be a very long time
away from time T0. In some databases (including Oracle)
MV behavior can be configured to automatically refresh;
the value may also be overwritten by new inserts, but only
after a certain number of rows on the page has been
deleted.

Related work

Drinkwater had studied carving data out of SQLite
storage Drinkwater. SQLite had been the focus of forensic
analysis particularly because it is used in Firefox Pereira
(2009) and in a number of mobile device applications
Pieterse and Olivier (2014). Chivers and Hargreaves (2011)
investigated recovery of deleted records from the Win-
dows Search database. OfficeRecovery provides a number
of commercially sold emergency recovery tools for cor-
rupted DBMSes OfficeRecovery (b,c,a) that support several
versions of each DBMS. OfficeRecovery products recover
most of database objects (except for constraints) e for
Oracle that also includes backup file recovery which is not
something we currently support because our primary focus
is on a universal multi-DBMS tool. Percona Projects sup-
plies a tool that recovers corrupted or deleted tables in
MySQL Percona, but does not recover the schema (and in
fact requires that the user to provide the descriptive data
structure for the schema). Stellar Phoenix sells DB2
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recovery software for IBM DB2 (UDB) v8 Phoenix (a) as well
as MS SQL Server for multiple versions Phoenix (b).

Forensic data analysis is generally concerned with
recovering partially damaged remnants of a file, typically
from a hard drive. Seminal work by Garfinkel (2007) dis-
cusses efficient file carving strategies that rely on file con-
tent rather thanmetadata, in order to restore the content of
a hard drive. Brown (2013) presents a mechanism for
recovering a compressed file that includes a corrupted re-
gion. Similarly, research that concentrates on the analysis of
volatile memory (RAM flash memory) tends to look for
particular patterns of interest. Grover (2013) describes a
framework for identifying and capturing data from an
Android device in order to protect that device from mal-
ware or investigate and/or audit its owner. Approaching
volatile data analysis also benefits from stochastic forensics
defined in Grier (2011), which derives probabilistic con-
clusions about user actions based on side effects of these
actions. Our approach relies a similar idea, with page layout
and database caching acting as side effects. Guido et al.
(2013) describes collecting data from a running Android
device to identify patterns ofmalicious software. The goal is
to identifymalicious applicationswithout an apriori known
signature by observing system events in real-time. Work by
Okolica and Peterson (2010) presents a generalized process
of performing a version-agnostic Windows memory dump
analysis. Similarly, it is our goals is to generalize the process
of database carving (disk or RAM) across all DBMSes and
operating systems.

Conclusion and future work

We presented a forensic tool that can auto-detect in-
ternal DBMS storage mechanics for new databases and
reconstruct the data structure and contents of known
DBMSes. Due to the particular storage techniques
employed by relational databases, our tool is able to restore
any remaining fraction of a DBMS as well as already-
deleted and otherwise inaccessible data. This generalized
forensic tool can thus eventually supplant the DBMS-
specific recovery tools currently available to forensic ana-
lysts. We intend to release our code to the wider commu-
nity and think that it can also serve as an independent
open-source auditing tool for all (including closed-source)
DBMSes.

This work only begins to explore the possibilities
opened up by looking into the raw database storage
directly. In addition to the self-evident benefit of recon-
structing database contents, we can learn a great deal of
other subtler facts. DBMS data caching behavior can be
directly observed to monitor user database activity based
on internal caching heuristic rules; databases also cache a
number of other elements of interest (e.g., SQL queries, raw
user output) that can be captured. Finally, looking at the
page storage offers precise fragmentation knowledge,
which opens up opportunities for improving database
design by performing tailored defragmentation.
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