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a b s t r a c t

The majority of sensitive and personal user data is stored in different Database Management Systems
(DBMS). For Example, Oracle is frequently used to store corporate data, MySQL serves as the back-end
storage for most webstores, and SQLite stores personal data such as SMS messages on a phone or
browser bookmarks. Each DBMS manages its own storage (within the operating system), thus databases
require their own set of forensic tools. While database carving solutions have been built by multiple
research groups, forensic investigators today still lack the tools necessary to analyze DBMS forensic ar-
tifacts. The unique nature of database storage and the resulting forensic artifacts require established
standards for artifact storage and viewing mechanisms in order for such advanced analysis tools to be
developed.

In this paper, we present 1) a standard storage format, Database Forensic File Format (DB3F), for
database forensic tools output that follows the guidelines established by other (file system) forensic
tools, and 2) a view and search toolkit, Database Forensic Toolkit (DF-Toolkit), that enables the analysis of
data stored in our database forensic format. Using our prototype implementation, we demonstrate that
our toolkit follows the state-of-the-art design used by current forensic tools and offers easy-to-interpret
database artifact search capabilities.
© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Database Management Systems (DBMS) are often used to
manage data in both corporate and personal settings. For Example,
a lightweight DBMS, such as SQLite, commonly manages personal
data stored on mobile phones or web browsers. Whereas, a DBMS
that supports more robust access control and storage management,
such as Oracle, PostgreSQL, MySQL, or Microsoft SQL Server, is
better suited to manage corporate data. Given the widespread use
of DBMSes, their contents are frequently relevant to forensic
investigations.

DBMSes manage their own storage (both on disk and in RAM)
independently from the operating system. As a consequence, the
operating system is oblivious to DBMS storage activity such as re-
cord modifications or caching policies. Therefore, an investigation
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that only uses digital forensics tools to reconstruct storage contents
from the operating system is inadequate when a DBMS is involved.

Database forensic carving tools have been proposed (Guidance
Software, 2018a; Drinkwater; Wagner et al., 2015, 2016, 2017a;
Percona, 2018), but incorporating their output into an investigation
remains difficult to impossible. The storage disparity between
DBMSes and operating systems may well in fact be the main culprit
for the stunted growth and limited applications of database fo-
rensics. We identified two major pieces currently missing from the
field of database forensics that have prevented its involvement in
forensic investigations: 1) a standardized storage format, and 2) a
toolkit to view and search database forensic artifacts.

Standard Storage Format. A standard database forensic storage
format would abstract the specifics of DBMS storage engines for
users unfamiliar with DBMS internals and guide the development
of database carving tools. All DBMSes use their own storage engine.
A standard storage format would allow users to view and search
database forensic artifacts, generate reports, and develop advanced
analytic tools without knowledge of storage engine specifics for any
given DBMS. A uniform output for database carving tools would
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also allow these tools to be compared and tested against each other.
View and Search Toolkit. A toolkit to view and search recon-

structed DBMS artifacts would allow investigators to easily inter-
pret the artifacts. While database data is stored and queried
through records in tables, the records alone do not accurately
represent the forensic state of a database since this data is
accompanied by a variety of metadata (e.g., byte offset of the re-
cord). Investigators need away to view how themetadata and table
records are interconnected.

In this paper, we describe a comprehensive framework to
represent and search database forensic artifacts. A preliminary
version of this framework was implemented for this paper, which
includes a format specification document and an evidence querying
application. Section 2 considers the work related to our framework,
and Section 3 defines our framework requirements. Next, Sections
4 and 5 present the twomain contributions of this paper, which are
the following:

1. We define a storage format and data abstraction for database
forensic artifacts called the Database Forensic File Format
(DB3F). Section 4 provides a detailed description of DB3F. The
DB3F definition can be downloaded from our research group
website: http://dbgroup.cdm.depaul.edu/DF-Toolkit.html.

2. We describe a toolkit called the Database Forensic Toolkit (DF-
Toolkit) to view and search data stored in DB3F. Along with a
description of DF-Toolkit, Section 5 presents a user interface that
implements DF-Toolkit. This user interface can be downloaded
from our research group website: http://dbgroup.cdm.depaul.
edu/DF-Toolkit.html.

Fig. 1 displays how DB3F and DF-Toolkit are used in database
forensic analysis. Database carving tools return output in DB3F.
DB3F files are filtered and searched using DF-Toolkit, which stores
filtered results in DB3F. DB3F files are then either directly reported
to the end user or passed to further advanced analytic applications.

The introduction of a standardized intermediate format and a
comprehensive toolkit for database forensics benefits the com-
munity in two important ways. First, it streamlines the addition of
new tools on either side of the flow chart in Fig. 1. With the
introduction of a new database carving tool (e.g., Tool D), users
would benefit from all available advanced applications that support
DB3F. Similarly, any newly developed advanced application can
trivially process output from any carving tool that supports DB3F
output. This intermediary approach is conceptually similar to Low
Level Virtual Machine (LLVM) (Lattner and Adve, 2004), a collection
of reusable compiler technologies that defines a set of common
language-independent primitives. The second benefit is the explicit
documentation and built-in reproducibility of the analyses process
and outcomes, bringing a scientific approach to digital forensics.
Garfinkel (Garfinkel et al., 2009) emphasized the lack of scientific
rigor and reproducibility within the field; although in (Garfinkel
Fig. 1. The role of DB3F and DF-T
et al., 2009) he focused on developing standard corpora, a stan-
dard storage format as well as a querying and viewing mechanism
is also necessary to achieve these goals. Rather than building
custom analytic tools (e.g., (Wagner et al., 2017b)), DF-Toolkit's
approach will offer a well-documented querying mechanism based
on defined standard fields in DB3F. Any query report can be easily
reproduced by another party or re-tested via a different database
carver.

This paper serves as the foundation for a vision of a complete
systemwith full support for database forensics and integrationwith
other forensic tools. Section 6 discusses planned improvements for
future developments to our framework, including advanced ana-
lytic applications.

2. Related work

This section presents work related to both DB3F and DF-Toolkit.
To help formulate our storage format, we took into consideration
metadata usage by many forensic tools, the capabilities of database
carving tools, and forensic languages used outside of database fo-
rensics. To help design our view and search toolkit, we consider the
evidence tree structure used by many forensic tools and current
data filtering approaches.

2.1. Storage format

Metadata Standards. File system metadata is widely used in
digital forensics to navigate file system information and reconstruct
event timelines. Popular tools, such as The Sleuth Kit (Carrier,
2019a), FTK (Access Data, 2019), and EnCase (Guidance Software,
2018b) use body files to represent this metadata. Thus, our data-
base forensic storage format was designed to include not only the
records that could be accessed through a live system, but also the
DBMS metadata, which users may not always have access to
through the DBMS API.

Database Carving Tools. Several database carving tools exist, but
they lack a unified output to store their results. These tools examine
and reconstruct database forensic artifacts at the page level. Pages
(typically 4 K or 8 K) are the minimum read/write unit for all row-
store relational DBMSes. Page configuration is typically described in
documentation by DBMS vendors (e.g., Oracle (Oracle Corporation),
Microsoft SQL Server (Microsoft), IBM DB2 (IBM), PostgreSQL
(Group), MySQL (MySQL), and SQLite (SQLite)). Drinkwater was one
of the earliest to describe a database carving approach for SQLite
DBMSes (Drinkwater). Guidance Software's SQLite Parser imple-
ments much of what Drinkwater discussed; they reconstruct both
allocated and unallocated SQLite data (Guidance Software, 2018a).
SQLite Parser returns the results in the form of a new SQLite
instance (i.e., a single database file). Wagner et al. proposed a
generalizedmethod to learn and reconstruct DBMS storage through
page carving (Wagner et al., 2015, 2017a). They proved this method
oolkit in database forensics.

http://dbgroup.cdm.depaul.edu/DF-Toolkit.html
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worked for most row-store relational DBMSes, including Apache
Derby, Firebird, IBM DB2, Microsoft SQL Server, MySQL, Oracle,
PostgreSQL, and SQLite. Their tool, DBCarver, returned much of the
metadata alongwith the allocated and unallocated user records in a
series of CSV files. Percona's Recovery Tool for InnoDB recovers
MySQL DBMS files (Percona, 2018), but we do not consider it a tool
for forensic investigations. OnceMySQL files are recovered, they are
imported into a live MySQL instance. Therefore, none of the unal-
located data or metadata is presented to the user. One of the main
goals in this paper is to define a unified storage format for the
allocated data and unallocated data returned by the work of
Drinkwater and Guidance Software, and the allocated data, unal-
located data, andmetadata returned by thework ofWagner et al. To
evaluate DB3F and DF-Toolkit for this paper, we used our previously
developed page carving tool, DBCarver (Wagner et al., 2017a). As
DBCarver does not support DB3F output, we converted its output
(CSV files) into DB3F.

Structured Forensic Languages. File names and file system prop-
erties are represented in formats such as JSON or XML with digital
forensic tools. Some examples include Mandiant's Indicators of
Compromise in Malware Forensics (Lock and Kliarsky), The MITRE
Corporation's Making Security Measurable Project (Martin, 2008),
and DFXML by Garfinkel et al. (Garfinkel, 2009, 2012). For this
project we used JSON to represent database forensic artifacts. JSON
can readily be migrated to XML if needed using most programming
languages.
2.2. View and search model

Evidence Tree. Most forensic tools (e.g., FTK, The Sleuth Kit/Au-
topsy, and Encase) that offer an interface to traverse and view ar-
tifacts use a tree structure to present these forensic artifacts.
Database forensic artifacts are inherently different from typical
forensic objects; therefore, objects such as files cannot serve as tree
nodes. For Example, a database table can span across multiple files
(as in PostgreSQL) or a database file can contain multiple database
tables and indexes (as in Oracle). In this paper, we present a new
evidence tree that was inspired by existing tools, but designed to
represent database forensic artifacts.

Filtering. SQL is a powerful tool that can enhance searching
forensic artifacts. Instead of iterating over a series of files, forensic
filtering tools can integrate SQL (i.e., relational) database capabil-
ities. FTK (Access Data, 2019) and The Sleuth Kit (Carrier, 2019a)
store case information in SQL databases, and we believe our
framework should take the same approach. The main challenge
with this, which we address in this paper, is that to properly use
SQL, the data must be first stored in a properly defined relational
schema. Some of the forensic SQLite tools (e.g., Guidance Software's
SQLite Parser) return results as a SQLite DBMS file, which can be
natively filtered using SQL. However, it does not include forensically
relevant metadata defined in (Wagner et al., 2015), which we
believe should be incorporated. Therefore, simply recreating the
DBMS is insufficient as it provides only data and not metadata. The
following examples illustrate this problem with two simple ques-
tions a database filtering framework should be capable of
answering.

Example 1. “Return all deleted records and their offsets”. A recre-
ated DBMS does not store metadata that describes deletion status
of a record or its offset within a disk image. To answer this query, at
least two additional columns (deletion flag and position offset)
must be added to every table reconstructed in the DBMS. It is
immediately apparent that such a model is not extensible, as
additional metadata columnswill be needed to support answers for
other types of forensic queries. Furthermore, by adding meta-
columns, distinguishing the meta-columns from the original
(“real”) data columns could become a challenge for users.

Example 2. “Find all records containing the string ‘MaliciousText”‘.
This query poses even more challenges than the previous example.
The user must search all columns across all tables. Such operation is
not well-supported by SQL, as SQL language has no capability to
apply a filter condition “for all columns”. To illustrate this problem,
assume we know there is just one table, Employee. The following
query would have to be written for every table:

We discuss our solution for this problem in Section 5.1.
3. Design requirements

The requirements identified for this work were based on the
overall goals and challenges in digital forensics discussed by
Garfinkel (2010) and the requirements defined by other digital
forensic frameworks, including Autopsy (Carrier, 2019b), DFXML
(Garfinkel, 2009, 2012), and FROST (Dykstra and Sherman, 2013).
This section describes some of the key requirements we considered
for the design DB3F and DF-Toolkit.

3.1. DB3F requirements

Storage Engine Agnostic. One of the major goals of DB3F is to
abstract DBMS storage engine specifics. This abstraction must
generalize to all row-store DBMSes and not lose any forensic arti-
facts. One Example of an artifact that may be interpreted differently
depending on the specific DBMS is the storage of the DBMS-internal
object identifier metadata. An object identifier is a unique identifier
for each object in the DBMS; it maps back to a system table for the
object's plaintext name (e.g., Employee). Most DBMSes store the
object identifier in the page header. Alternatively, PostgreSQL
stores the object identifier with each individual record (even
though it is redundant, as a single database page can only contain
data belonging to one object). The function of the object identifier
remains the same despite where it stored. Therefore, DB3F should
remove the need to know the specifics of how such metadata is
stored.

Simple to Generate and Ingest. DB3F should be generated by all
database carving tools and used by any searching or advanced an-
alytic tools. Therefore, the DB3F should be easy to generate, and
parsing data from DB3F should be trivial.

Open and Extensible. DB3F should be publicly available and open
sourced. Fields should be easy to add to the public standard.
Additionally, given the potentially wide variety of organizations
and databases that may use DB3F, custom field addition should be
allowed e new custom fields should be easy to introduce. For
Example, the standard operating procedure for one organization
may require chain of custody information that is currently not a
field in the DB3F file header. In such cases, it should be easy for an
organization to introduce this information into DB3F.

Scalable. The amount of database forensic artifacts that may be
discovered and will require processing is unpredictable (and pro-
jected to continuously increase). An investigation may involve a
small (KBs), lightweight DBMS from a personal device, or it may
involve a large (PBs), data warehouse stored on multiple servers.
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Moreover, an investigation may involve multiple computers (e.g., a
network of IoT devices), each with their own individual DBMS.
Therefore, the amount of carved data stored in DB3F should not
impact the system capabilities.
3.2. DF-toolkit requirements

Visibility. Forensic tools return a wide variety of data and met-
adata to users. These artifacts should be organized and presented to
users in a manner such that the data can be traversed. This is
traditionally done using a representative tree structure where the
root nodes are the critical data structures (e.g., disk partitions), the
next level nodes are used to store the data objects (e.g., stand-alone
files), and all other node levels are used to store information about
the carved data objects.

Display Data Objects. Given that the user can view a logical or-
ganization of the forensic artifacts in an evidence tree, the user
would most certainly want to view the data objects and their
content. Such viewing should be allowed through a user interface.

Object Filtering.When a user is presented with a large number of
data objects, she may desire to filter these to a relevant subset. For
Example, a user may only be interested in JPEG files so a corre-
sponding filtering condition (filetype ¼ ‘JPEG’) may be applied.
In DBMSes, a user maywant to filter objects based on themetadata,
such as object type (e.g., table, index, materialized view), number of
columns, or object size.

KeywordSearches. Keyword searches are commonly used in
forensic investigations to find relevant evidence. String matches
and regular expressions should be supported for filtering records
(e.g., find all mentions of ‘Bob’).

Reporting. Reports need to be generated to help analysts make
conclusions and present their findings. Furthermore, this reporting
should allow for comparison and validation of database forensic
carving tool output.
4. The Database Forensic File Format

This section presents our storage format for database forensics,
DB3F. This is the format that should be used by different database
carving tools to output their results.
Fig. 2. An Example of DB3F header.
4.1. File Layout

When a database carving tool is passed a file, a carver tool an-
alyzes it for the presence of one or more different DBMSes. Since
each DBMS is a self-contained system, data from different DBMSes
should not be mixed within the same carver output file. Each DBMS
is stored as a separate output file.

Multiple DBMSes may exist on the same piece of evidence.
However, it is acceptable for multiple carver output files to be
associated with a single DBMS. For Example, a series of DBMS files
(from a single file system or multiple nodes) belonging to the same
DBMS may be passed to the carver as opposed to a single disk
image. Moreover, the RAM snapshot(s) will be a separate evidence
file for any given DBMS. Therefore, this condition is required if one
wants to compare the data from a disk image and a RAM snapshot.

Example 3. File Layout. DiskImage01.img is passed to a data-
base carving tool. The carving tool analyzes the evidence for data
belonging to PostgreSQL and SQLite DBMSes. This results in two
output DB3F files (one for each DBMS): PostgreSQL.json and
SQLite.json.
4.2. DB3F files

Each DB3F file stores a series of JSON objects. The first line in a
DB3F files contains a JSON object that serves as a header. Every
other line in the DB3F contains a JSON object that represents a
database page.

Representing the entire carved DBMS with a single JSON object
has scalability problems because the amount of data in a DBMS can
be arbitrarily large. Therefore, one JSON object per DBMS page al-
lows us to achieve the scalability requirement (see Section 3). The
physical order of DBMS pages is irrelevant because each page object
stores its offset within the disk image.

4.3. DB3F header

The DB3F file header JSON object contains high-level metadata
about the artifacts in the file and how they were collected. The list
below describes the fields, which should be returned by the data-
base carving tool, stored in the header. Additionally, Fig. 2 displays a
DB3F file header with Example data. Since we cannot anticipate all
of the header information each specific organization may require,
JSON fields can easily be added.

context (array): namespace information.
name (string): the organization name used to identify custom

header information.
uri (string): unique identifier for an organization.
evidence_file (string): the disk image or RAM snapshot from

where the forensic artifacts originated.
forensic_tool (string): the database carving tool used to

generate the forensic artifacts.
carving_time (string): the system global time when the carver

finished generating the DB3F file.
dbms (string): the DBMS vendor and its version.
page_size (number): the page size used by the DBMS. Page size

is assumed to be constant across an entire DBMS. It is theoretically
possible to use more than one page size in a DBMS. However, we
assume the database carving process will extract different page
sizes as belonging to different DBMSes.

4.4. DB3F database pages

Each line following the DB3F header contains a single JSON
object that represent a database page. Each page stores 1) page
header fields and 2) an array of JSON objects that represent records.
Fig. 3 displays an Example of how DB3F represents a PostgreSQL
DBMS page storing Star Schema Benchmark data (Neil et al., 2009).
The fields in this figure are defined in this section.

Page Header. The page header stores information that is general
to all records within the page. The page header fields are the
following:



Fig. 3. An Example DB3F page JSON object.

Table 1
File size comparison of DB3F file to the DBMS file for a 600 MB CSV file of raw data.

DBMS DBMS(MB) DB3F(MB)

Oracle 625 1329
PostgreSQL 648 1298
SQLite 445 1308

J. Wagner et al. / Digital Investigation 29 (2019) S42eS50S46
offset (number): the page address within the evidence.
page_id (string): a unique identifier the DBMS assigns to a page.
object_id(string): an identifier that the DBMS uses to map to

the plaintext name of each object (e.g., table or index).
page_type (string): the type of object to which the page

belongs.
schema (array): the data types for the record columns within

the page.
records (array): a list of JSON objects for each record.
Record. A JSON object exists for each record in the page. The

record fields are the following:
offset (number): the record address within the page.
allocated (boolean): True indicates the record is allocated,

while False indicates the record is deleted (i.e., unallocated storage).
row_id (string): an internal DBMS pseudo-column.
values (array): the individual record values.
The fields defined in this section is not an exhaustive list. We

anticipate that new fields will be added to the DB3F standard as the
tool use grows and organizations will want to add their own
custom fields.
Discussion: Datatype Support. While the Example data in Fig. 3
illustrates only strings and numbers, DB3F supports all DBMS
datatypes. Each datatype is described in the page header schema
field, and the value is stored among the values field for a record.
Users may be concerned about storing values that do not fit into a
single page, such as Binary Large Objects (BLOBs) and large text
fields. To store BLOBs, DBMSes do not directly store the binary data
within the page, but rather store a reference to a file containing the
binary data. For example, a DBMS would store a reference to a JPEG
file in a page rather than the binary JPEG data. DB3F would similarly
store a reference to a file, with the actual binary file (e.g., JPEG)
stored in a separate dedicated location. It is possible for a text value
to span acrossmore than one page. In this instance, each DB3F page
object describes the text stored in an individual page, allowing the
long text value to be reconstructed independently. Additionally, in
some case text field will store pointers to the remainder of the text
located in different pages. In such cases, DB3F will store whatever
information is provided by the database page carving tool. Addi-
tional analysis is required to rebuild the entire text value e a DBMS
pointer can be reconstructed using the metadata already stored in
DB3F fields. The work in (Wagneret al., 2018) discusses DBMS
pointer reconstruction in more detail.
4.5. Evaluation

To verify the reliability of DB3F, we used three DBMSes: Post-
greSQL, Oracle, and SQLite. We loaded Star Schema Benchmark data
(Neil et al., 2009) at Scale 1 (600 MB) into each DBMS, used
DBCarver to carve the DBMS files, and converted the CSV file output
into DB3F. We converted the artifacts carved from Oracle and
PostgreSQL DBMS files into DB3F without any problems. However,
since SQLite does not store an object identifier in the pages, this
metadata could not be included in DB3F directly. As an alternative,
we used the table schema (i.e., the string with column datatypes) to
represent the object identifier. This decision was made because all
records for the same table will have the same number of columns
and the same datatype for each column. However, we note that
more than one table can have the same schema; thus, our decision
merged tables with identical columns in SQLite. Table 1 summa-
rizes the sizes of the DBMS files passed to DBCarver and our
generated DB3F files for the 600 MB Scale 1 SSBM data used. The
DB3F storage overhead allows for human readability. However,
DB3F can be compressed to scale for analysis of larger forensic
datasets.
5. The Database Forensic Toolkit

This section presents our toolkit, DF-Toolkit, to view and filter
DBMS forensic artifacts stored in DB3F. First, we describe the evi-
dence tree structure that serves as a core concept behind this
toolkit. This tree structure allows users to traverse and view met-
adata and data stored in DB3F files. Next, we discuss how this tree
allows carved database metadata and data to be searched and
filtered by the user. Finally, our solution to reporting filtered met-
adata and data in DB3F is described.

Throughout this section we refer to Figs. 4 and 5. As a proof of



Fig. 5. The relational schema used to store the evidence tree data in a SQL database.
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concept, Fig. 4 displays our implemented user interface to display
the evidence tree. Fig. 5 contains the relational schema used to
store the evidence tree nodes in a SQL database for searching and
filtering results. These tables are populated when a tree is first
viewed; they can be cached or rebuilt by DF-Toolkit as necessary.

5.1. The evidence tree

The evidence tree presented in this section follows the same
principles as many popular digital forensic tools (e.g., The Sleuth
Kit, FTK, EnCase). Similar to these tools, we classify threemain node
levels in the tree: root, object, and object description. Alternatively
in this paper, the tree nodes are defined to accurately represent
database forensic artifacts.

Root. The root node serves as a critical storage structure from
which all other data can be reached. For Example, a disk partition
may be a root in commonly used forensic tools. Since DBMSes
manage their own storage, a disk partition does not represent a
major storage structure in a DBMS. For example, a DBMS may store
files across multiple disk partitions. When this is done, system ta-
bles and user tables would likely be stored on different partitions.
Furthermore, a single table could be stored on multiple disk par-
titions. Therefore, a DBMS sample (i.e., the complete or partial
DBMS storage content taken from a storage medium) makes an
appropriate storage structure for a root. A database root node is not
expected to contain an entire DBMS. It is likely that the piece of
evidence is a disk partition, RAM snapshot, or contains a corrupt
(e.g., partially overwritten) DBMS. Therefore, by “DBMS sample”,
we mean all of the data associated with a DBMS for a given piece of
evidence.

In Fig. 4, there are two images that represent evidence,
Image01.img and Image02.img. Image01.img contains two root
nodes (i.e., DBMS samples), PostgreSQL and MySQL. Since DB3F
Fig. 4. DF-Toolkit evidence tree imp
requires that a carver tool store DBMS samples in separate output
files, each root node always corresponds to a single DB3F file.

In Fig. 5, the DBMS_Sample table stores a record for each root
node. DB3F_File is a reference to the DB3F file. This also serves as a
lemented with a user interface.



Table 2
Sample representation of carved rows on per-value basis.

Offset RowID Alloc. Pos. Value

318 72 True 1 ‘430’
318 72 True 2 ‘Supplier#000000430’
318 72 True 3 ‘9eN nRdw0Y4tl’
318 72 True 4 ‘ARGENTINA5’
318 72 True 5 ‘ARGENTINA’
318 72 True 6 ‘AMERICA’
318 72 True 7 ‘11-406-611-4228’
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unique identifier (i.e., primary key) for each DBMS sample record.
DBMS is the DBMS vendor name and version. PageSize is the page
size used by the DBMS sample. PageCnt refers to the number of
pages associated with the DBMS sample. Therefore, the total DBMS
sample storage size can be calculated using PageSize � PageCnt.
DiskImage is a reference to the evidence (e.g., disk image, RAM
snapshot) associated with this DBMS sample. This column also
references (i.e., a foreign key) the Evidence table. For every entry in
the DBMS_Sample table, a new schema is created containing an
Object table, Page table, and Record table.

Data Objects. The next level in the tree are the data objects for
which the root is examined. For Example, a stand-alone file (e.g.,
PDF, Word document) may be a data object in commonly used
forensic tools. DBMS files can contain multiple DBMS objects (e.g.,
tables), and a DBMS object can span across multiple DBMS files.
Artifacts belonging to each DBMS object should be associated with
each other. Therefore, DBMS files themselves should not be treated
as the data objects like traditional stand-alone files. Amore suitable
candidate for the data object node are the DBMS objects (e.g.,
customer table, employee table, customer name index). DBMS
metadata and data can be associated with DBMS objects by using
the object identifier metadata stored within DBMS pages (dis-
cussed in Section 3.1). Additionally, viewing the DBMS files them-
selves does not provide the user with much useful information
since they are not stand-alone.

In Fig. 4, the PostgreSQL root node has four data objects:
1113438, 1113446, 1113441, and 1113440. Statistics and metadata
describing the selected object, 1113440, is displayed in the bottom
left-hand box. This object is a table with 28 pages (not all displayed)
and seven columns (one number and six strings), beginning under
the heading, “Record”.

In Fig. 5, the Objects table stores information about each object.
ObjectID is the object identifier used by the DBMS, which also
serves as the primary key. Type represents the type of DBMS object
(e.g., table, index, or materialized view). PageCnt stores the number
of pages associated with the object. ObjectSchema represents the
data types for each column in the table.

Object Information. Two more tree levels are used to recursively
store information about each object at the page level and the record
level. Storing information about each DBMS page allows for sta-
tistics to be quickly collected for an object (or a fast stochastic
analysis), and removes data redundancy at the record level.

In Fig. 4, the pages associated with the selected object, 1113440,
are displayed in the right-hand side box. We know there are a total
of 28 pages, which are not all displayed in the figure, based on the
object information in the bottom left-hand box.

In Fig. 5, the Page table stores information about each page.
Offset refers to the byte address of the page with the evidence file.
This also serves as the primary key. PageID is metadata used by the
DBMS to uniquely identify pages. Note, that we do not use this as
the primary key because multiple copies of a page may exist (e.g.,
one from the DBMS file and one from a paging file on the same disk
image). ObjectID is metadata used by the DBMS to identify objects,
and this column also references the Object table.

Information about each record within a page is the last node
level in our evidence tree. In Fig. 4, the records associated with the
selected page, offset ¼ 3784704, are displayed in the right-hand
side box. In Fig. 5, the Record table stores information about each
records. PageOffset refers to the byte address of the pagewithin the
evidence file. This column also references the Page table. Record-
Offset refers to the byte address of a record within the page.
PageOffset and RecordOffset together serve as the primary key.
RowID is metadata, which is a DBMS internal pseudo-column.
Allocated identifies the record as ‘active’ or ‘deleted’ (i.e., unallo-
cated). Record is a string that combines all record values. Each value
within the string has single quotes around it, and all values are
separated by a comma.

We stop recursively constructing the tree at the record level.
That is, the leaf level of the evidence tree is a database record (e.g., a
single row in Fig. 4) rather than a field (e.g., ‘ARGENTINA’ in Fig. 4).
Logically, another tree level could be added for individual values.
For our current version of DF-Toolkit, this step is not needed for
plaintext searches. We believe that extending the evidence tree to
include individual fields of the database table should be explored in
the future to support more advanced analysis; however, the proper
execution of such a feature will introduce significant imple-
mentation challenges. Continuing to represent data with a proper
relational schema (as in Fig. 5) does not scale well when individual
values are considered because each value must now be stored as an
entry in the Value table e for Example, representing the first row
from Fig. 4 at individual value level as shown in Table 2. Therefore,
to search for an individual value, an entry from the Value table
would need to with the Record table.

Another possible approach would be to create a new table for
each DBMS object from each DBMS. The data would be ingested
from a CSV file generated from the DB3F file. This approach would
be similar to Guidance Software's SQLite Parser (discussed in Sec-
tion 2). While we envision this to be a more viable solution, an
incomplete DBMS from evidence such as a RAM snapshot or
corrupt DBMS poses an implementation challenge; table columns
would be ambiguously defined creating issues when querying data.
For Example, column names would need be created as Column1,
Column2, etc. We do not consider the presence of a complete DBMS
to be a safe assumption for DF-Toolkit purposes.

5.2. Data display filters

Data filtering is performed at the DBMS level; tables (or objects)
for each DBMS schema are considered. The following is the basic
query need to properly connect a DBMS schema before applying
filtering conditions, where DB3F_File is the root node:

This query returns all rows from the Objects, Page, and Re-

cord tables for a given DBMS so that the data can be put back into
DB3F (this is further explained in Section 5.3). Beyond this query,
only a basic understanding of SQL is needed to perform custom
filtering.

Objects. Users can filter objects by simply adding WHERE clause
conditions to the query above. Objects can be filtered based on the
following metadata fields: ObjectID, Object Type, Object Page
Count, and Object Schema. For Example, if the user was only con-
cerned with the object with seven columns (one number and six
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strings), the following condition would be added:

O.Schema ¼ ‘NSSSSSS’

Pages. Users can also filter pages with clause conditions.
Pages can be filtered based on the following metadata fields: Page
Offset, PageID, and Page ObjectID.

Records. Finally, users can filter record with clause con-
ditions. Records can be filtered based on the following metdata
fields: Record PageOffset, Record Offset, Record RowID, Record
Allocated/Deallocated, and the data stored in the record. Most
importantly, users would want to apply keyword searches to the
data stored in records. All of the values for a carved record are
stored as a single string making this feature easy to support. Since
SQL supports string matches, wildcards, and regular expressions,
keyword searches can be applied by adding another clause
condition(s). For Example, to search for all records containing a
phone number (in the format of the data from Fig. 4):

R.Record REGEXP ‘\d{2}-\d{3}-\d{3}-\d{4}’

Fig. 6 displays an Example interface to apply filtering within our
user interface. The conditions are previously written, simpli-
fying user interaction. The user then adds the two example con-
ditions presented for object filtering and keyword searches.
5.3. Report generation

After filtering is applied, the results are returned as DB3F.
Storing the report back into DB3F allows the data to be viewed
within the evidence tree, available for further filtering, and to
future advanced analytic tools. We note that DF-Toolkit was able to
find every relevant carved artifact in its search (providing a search
accuracy of 100%). Report accuracy is thus dependent only on the
accuracy of carving provided by the database carving tool(s).
6. Conclusion and future work

This paper presented a new storage format for database forensic
artifacts called the Database Forensic File Format (DB3F), and a
toolkit to view and search data stored in DB3F called the Database
Forensic Toolkit (DF-Toolkit). Additionally, a user interface was
presented to provide a display of DF-Toolkit. To adhere to the
DFRWS double-blinded peer review process, links to the
Fig. 6. DF-Toolkit filtering implemented with a user interface.
implementation were not included. Both DB3F and DF-Toolkit will
be made publicly available through our research group website
with the camera-ready version of this paper.

We envision that DB3F and DF-Toolkit will serve as the
groundwork for a complete forensic and security analysis system.
Future work for this system is discussed below, which includes:
incorporating DBMS system data carved from the evidence, carver
tool integration, multi-evidence analysis, and non-page data
integration.

6.1. System catalog information

While the metadata presented to users through DF-Toolkit is
accurate, some DBMS forensic artifacts may become difficult to
interpret for users, especially as the amount of data increases. For
Example, the object identifiers (e.g., ‘1113440’) alone do not mean
as much as the plaintext object name (e.g., ‘Supplier’) to an inves-
tigator exploring evidence. Our top priority for future work is to
automate the detection and association of DBMS system catalog
information, which is stored in DBMS system tables, to replace such
metadata with more readable plaintext. We do see two main
challenges with this work. First, the system catalog may not always
be present (e.g., corruption of data on disk or when using a RAM
snapshot). Therefore, DF-Toolkit would need to accurately
communicate to a forensic analyst why such metadata is not
available. Second, each DBMS has its own system table schema.
Therefore, detection and association of this information requires
tailored functions for each DBMS vendor.

6.2. Carver tool integration

For this paper, we generated DB3F files from carved output
stored in CSV files. This step would be tedious for users, and we
believe it should be streamlined. Ideally, we would like to work
with the current and future creators of database carving tools
(Section 2) to return their results in DB3F. Making DB3F publicly
available will help to catalyze this effort.

6.3. Advanced analysis

This paper presented straightforward filter and search examples
for single pieces of evidence. However, we envision a more com-
plete toolkit to access and interpret database forensic artifacts. This
mostly comes in the form of a database forensic API, which would
be a DBMS complement to Garfinkel's Fiwalk (Garfinkel, 2009). The
primary uses for such work include multi-evidence analysis and
integration with non-DBMS page data and other forensic tools.

Multi-Evidence. An investigation may involves multiple pieces of
evidence when a series of disk images or RAM snapshots was
collected, a DBMS was distributed across multiple nodes, or mul-
tiple devices contained individual DBMSes. In these cases, meta-
data and data can be compared to recreate event timelines. Most
IoT devices typically store information locally on a lightweight
DBMS (e.g., SQLite), send information to a server that uses a more
robust DBMS (e.g., MySQL), or both. For Example, the Amazon Alexa
and Samsung Galaxy images from the DFRWS IoT Challenge
2018e2019 (DFRWS, 2018) each contain a SQLite DBMS. Assuming
that these devices had some form of interaction, connecting data
and metadata from both devices would help to create an event
timeline.

Integration of Non-DBMS Page Data. Almost all of the DBMS data
andmetadata is stored in pages; thus, it can be represented in DB3F
and searched with DF-Toolkit. However, connecting metadata and
data outside of DBMSes to DB3F files would create more complete
timelines. These sources include audit logs, network packets, and
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files which are referenced by DBMS records. Section 2 discussed
just some of the tools used to store and searched these data and
metadata. We hope that bringing this discussion to the DFRWS
community will help bridge the gap between these different do-
mains within digital forensics.
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