
Author's personal copy

Detecting data theft using stochastic forensics

Jonathan Grier*

Vesaria, LLC, United States

Keywords:

Data theft

Stochastic forensics

Data breach

Data exfiltration

Filesystem forensics

MAC times

Forensics of emergent properties

a b s t r a c t

We present a method to examine a filesystem and determine if and when files were copied

from it. We develop this method by stochastically modeling filesystem behavior under both

routine activity and copying, and identifying emergent patterns in MAC timestamps

unique to copying. These patterns are detectable even months afterwards. We have

successfully used this method to investigate data exfiltration in the field. Our method

presents a new approach to forensics: by looking for stochastically emergent patterns, we

can detect silent activities that lack artifacts.

ª 2011 Grier. Published by Elsevier Ltd. All rights reserved.

1. Background

Theft of corporate proprietary information, according to the

FBI and CSI, has repeatedly been the most financially harmful

category of computer crime (CSI and FBI, 2003). Insider data

theft is especially difficult to detect, since the thief often has

the technical authority to access the information (Yu and

Chiueh, 2004; Hillstrom and Hillstrom, 2002). Frustratingly,

despite the need, no reliable method of forensically deter-

mining if files have been copied has been developed (Carvey,

2009, p. 217). Methods do exist to detect particular actions

often associated with copying, such as attaching a removable

USB drive (Carvey, 2009; Carvey and Altheide, 2005). Methods

also exist that can detect copying when given a network trace

of the activity (Liu et al., 2009), or when given the media to

which the files were copied to (Chow et al., 2007). However, no

method has yet been discovered that given only a filesystem

can determine if its files were copied. Carvey summarizes this

problem: (Carvey, 2009, p. 217), “there are no apparent arti-

facts of this process [of copying data].. Artifacts of a copy

operation. are not recorded in the Registry, or within the

filesystem, as far as I and others have been able to determine.”

In this paper, we develop a method to do exactly that:

analyze a filesystem to determine if and when its files were

copied. We report on the foundations of our method (Section

3), simulated trials (Section 4), its mathematical basis (Section

5), and usage in the field (Section 6).

2. Can we use MAC timestamps?

Farmer and Venema’s seminal work (Farmer, 2000; Venema,

2000; Farmer and Venema, 2004) describes reconstructing

system activity via MAC timestamps. MAC timestamps are

filesystem metadata which record a file’s most recent Modi-

fication, Access, and Creation times. By plotting these on

a timeline, investigators can reconstruct filesystem activity,

and hence computer usage, of a particular time. An investi-

gator can also plot a histogram of filesystem activity, showing

amount of activity per time period (Casey, 2004).

Seemingly, we should be able to use MAC timestamps to

detect data exfiltration. However, as mentioned above, the

standard methods of MAC timestamp analysis fail to do this.

Neither timelines nor histograms can distinguish copying

from other forms of file access. Moreover, Microsoft Windows

NTFS systems do not update a file’s access timestampwhen it

is copied. Unlike Unix based systems, which implement copy

commands in user code via standard reads of the source file

and writes to the destination file (Sun Microsystems Inc.,

2009a,b; Free Software Foundation Inc., 2010), Windows

* Corresponding author. Tel.: þ1 443 501 4044.
E-mail address: jdgrier@grierforensics.com.

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ier . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7

1742-2876/$ e see front matter ª 2011 Grier. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.009

Author's personal copy

provides a dedicated CopyFile() system operation (Microsoft

Corporation, 2010a). Thus, Unix based filesystems do not

distinguish copying a file from other forms of accessing it;

both are done via read(), and both update the file’s access

timestamp. (This was experimentally confirmed using the cp

command on a Linux 2.6.25 ext3 system.) Windows, however,

distinguishes between the two at the system level. Our

experiments (performed on a Microsoft Windows XP Profes-

sional 5.1.2600 system) confirm thatWindows indeed does not

update the access timestamp of the source file when copying

it, making file copying seemingly invisible.

3. Emergent patterns caused by copying

To be able to detect copying, we must refine our model of its

filesystem activity. For the rest of this paper, we concern

ourselves with the copying of an entire folder with numerous

subfolders and files; we believe this to be the typical form of

data exfiltration.

We can distinguish between the access pattern of copying

and that of routine access. Routine file access is selective:

individual files and folders are opened while others are

ignored. It is also temporally irregular: files are accessed in

response to user or system activity, followed by a lull in access

until the next activity causes new file access. Copying of

folders, however, is nonselective: every file and subfolder

within the folder is copied. It is furthermore temporally

continuous: files are copied sequentially without pause until

the entire operation is complete. Copying folders is also

recursive: copying one folder invokes the copying of all sub-

folders, which each invoke copying of their subfolders, and so

on, while routine activity is randomly ordered (see Table 1).

This recursive nature of copying results in an additional

trait. To copy a folder, the systemmust enumerate the folder’s

contents. Modern filesystems implement folders as special

types of files called directories; to enumerate a folder’s

contents, the system accesses and reads the directory file.

Thus, copying will invariably access a directory before

accessing its files and subfolders. What’s more, since this is

a data read and not a file copy, Windows NTFS does update the

access time of the directorywhen its contents are enumerated.

Our experiments confirmed that on both the above Windows

and Linux systems, copying a folder updates the access time

of the folder’s directory and all subdirectories.

Thus, although, as stated above, copying creates no indi-

vidual artifact, it does create distinct emergent patterns. A fil-

esystem examined immediately after copying occurs will

show the five characteristics enumerated in Table 1. See Fig. 1

for a graphic example.

However, we cannot yet apply this technique in the field:

MAC timestamps, notorious for being quickly overwritten, are

unreliable. And other types of recursive access besides

copying may also cause such emergent patterns. We address

these problems in Section 4 and Section 7.

4. Digging for footprints

Althoughwehave identifieddistinct emergentpatternscaused

by copying, we should be skeptical about using them in real

world investigations. Timestamps are notoriously ephemeral:

like footprints, they are swept away by newer activity (Farmer

and Venema, 2004). If an investigation is performed weeks or

monthsafter thedata theft, dowehaveanyhopeofunearthing

these emergent patterns in timestamps?

Surprisingly, the answer is yes: we can indeed detect them

evenmonths after the copying, and even when the date of the

alleged copying is unknown. To do so, we must make two

observations: First, while normal system activity (ignoring

things like intentional tampering or resetting the system

clock) can increase access timestamps tomore recent times, it

cannot decrease them. Thus, although access timestamps are

extremely volatile (as each access overwrites the previous

timestamp), they nonetheless maintain an invariant of always

increasing monotonically.

Second, filesystem activity is by no means uniformly, or

even normally, distributed over files. Activity more closely

resembles heavy-tailed distributions, such as a Pareto distri-

bution (Wikipedia, 2010): a small amount of files generally

account for a large portion of activity, with a significant

amount of files undergoing negligible activity (Vogels, 1999;

Gribble et al., 1998; Ferguson, 2002). Farmer and Venema

(Farmer and Venema, 2004, p. 4) report that over periods as

long as a year, the majority of files on a typical server are not

accessed at all.

Consequently, if a folder was copied, we can expect to find

the following, even if several weeks or months have elapsed

since the time of copying:

� Neither the copied folder, nor any of its subfolders, have

access timestamps less than the time of copying.

� A large number of these folders have access timestamps

equal to the time of copying.

� On Windows, file timestamps will not resemble folders’

timestamps. Specifically, many files will have access time-

stamps before any of the folders.

Copying thus creates an artifact which we call a cutoff

cluster: a point in time which no subfolder has an access

timestamp prior to (hence a cutoff), and which a dispropor-

tionate number of subfolders have access timestamps equal

to (hence a cluster). We generally expect a folder to have

a number of rarely accessed subfolders, which cause the

cutoff cluster to remain detectable for several weeks or

Table 1 e Differences in access timestamp updates
between copying folders and routine activity.

Copying folders Routine access

Nonselective (all subfolders and files

accessed)

Selective

Temporally continuous Temporally irregular

Recursive Random order

Directory accessed before its files Files may be accessed

without directory

On Windows: directory timestamps

updated, but not file

Both directory and file

timestamps updated

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7S72

Author's personal copy

months (or until the next act of copying). Conversely, in the

absence of copying (or other nonselective, recursive access),

we expect to find some folders with access timestamps

extending far back in time, consistent with a heavy-tailed

distribution.

To explore this, we simulated a model filesystem con-

taining two folders, FolderA and FolderB. Each folder has 1000

children (files or subfolders), created at the start of the simu-

lation, and is accessed approximately 100 times a day. File

access is distributed randomly using a Pareto distribution.

FolderA is copied 200 days after the start of the simulation;

FolderB is never copied. After 300 days of simulation, we

tabulated the date of most recent access for each file; that is,

the files’ access timestamps. Both folders had more than half

of their files accessed within the final two weeks of the

simulation. Nonetheless, we are able to identify a clear cutoff

cluster occurring at the time of copying of FolderA (see Fig. 2).

(An interactive version of the simulator is available at http://

grierforensics.com/datatheft/sim/).

Note that, on Windows, a cutoff cluster is invisible unless

we first filter the histogram to include only subfolders (and not

files).

In short, if a large folder is copied, it will result in a cutoff cluster;

this cutoff cluster can be detected months after the date of copying,

even with low resolution timestamps and substantial

amounts of noise.

5. Quantitative analysis of cutoff clusters

We now proceed to define metrics allowing us to quantita-

tively detect andmeasure cutoff clusters. For the remainder of

this paper, we concern ourselves with systems such as

Windows NTFS, which do not update file access timestamps

on copy. Modifying our method for use with systems such as

Linux ext3, which do update file access timestamps on

copying, is straightforward.

We use the conventional model of a filesystem as a tree,

with each subfolder a child of its parent folder. For each folder

f, we define

DðfÞ ¼ ffgWfxjx is a descendant folder of fg:

That is, DðfÞ is the set of f and all of its descendant folders.

Note that only folders, and not files, are members of f. For

a given time t, we partition DðfÞ into four disjoint subsets:

DbtðfÞ ¼ fxjx˛DðfÞ^access timestampðxÞ < t

^ creation timestampðxÞ < tg

DetðfÞ ¼ fxjx˛DðfÞ^t � access timestampðxÞ � tþ e

^ creation timestampðxÞ < tg

DatðfÞ ¼ fxjx˛DðfÞ^access timestampðxÞ > tþ e

^ creation timestampðxÞ < tg

DitðfÞ ¼ fxjx˛DðfÞ ^ creation timestampðxÞ � tg:
e should be somewhat greater than the expected duration of

copying; a good initial value is 10000 s.

We define ametric ClustertðfÞ, indicating the relative size of

the cutoff cluster, and thus the likelihood that folder f was

copied on time t, as follows:

ClustertðfÞ ¼
�

0; if jDbtðfÞj> 0
jDetðfÞj=ðjDetðfÞj þ jDatðfÞjÞ otherwise:

This metric ranges between 0 and 1, indicating the size of the

cutoff cluster, relative to the maximum size theoretically

possible.

We furthermore defineMagtðfÞ, indicating the sample size,

and thus the confidence of ClustertðfÞ, as follows:

MagtðfÞ ¼
�

N; if jDbtðfÞj> 0
jDetðfÞj þ jDatðfÞj otherwise:

MagtðfÞ is on a nominal scale, and is defined to be infinite

when Clustert is zero. MagtðfÞ can be interpreted as: the more

subfolders f has, the larger our sample, and the more confi-

dent we are.

We can define a second confidencemetric as follows. Given

a set S of folders, let FilesðSÞ be the set of all files contained in

any folder in S. We define a confidence metric jAbntðfÞj, where

AbntðfÞ ¼ fxjx˛FilesðDðfÞÞ^access timestampðxÞ < t� dg:
jAbntðfÞj can be interpreted as if a large number of files in f

Fig. 1 e The left side shows the access timestamp updates that would occur upon copying folder Project Aurora. Updates that

would occur on Linux but not on Windows are shown in gray. The right side shows updates that might occur during typical

user activity, which, unlike folder copying, is selective, temporally irregular, and randomly ordered (see Table 1).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7 S73

Author's personal copy

have access timestamps less than t, while no subfolders do,

we become very confident that f was indeed copied. High

values of jAbntðfÞj give great confidence in ClustertðfÞ, because
they show that the historical file activity is too sparse to have

created a cutoff cluster by chance. A good value for d is 10

days; it should be large enough to distinguish the time of the

alleged copying from prior historical behavior. Note that

jAbntðfÞj is only applicable to Windows NTFS and similar

systems that do not update file access timestamp on copying

(see Section 2 above). On systems such as Linux ext3 which

update the file access timestamp, we need to substitute

jAbntðf 0Þj, where f 0 is a folder similar to f that is known to not

have been copied.

In short, these metrics quantitatively measure the cutoff

cluster: ClustertðfÞ indicates the cutoff cluster’s relative size,

ClustertðfÞ�MagtðfÞ its absolute size, and jAbntðfÞj its

abnormality.

6. Field results

Wesuccessfullyusedthesemetricsaspartofan investigationof

suspected data theft. At the time of the investigation

(tinvestigation), it was suspected that FolderQ had been surrepti-

tiously copiedduring awindow30e60days before tinvestigation. To

investigate this, we computed the metrics on several top level

folders, for all t in the range ðtinvestigation � 180days; tinvestigationÞ.
ClustertðFolderQÞ was greater than 0:3 at t1
ðztinvestigation � 50 daysÞ, with Magt > 5000 and jAbntj > 50000,

forensically supporting the suspicion. FolderR also had a non-

zero Clustert value at t2 ðztinvestigation � 70 daysÞ, which subse-

quent investigation determined was due to authorized

copying. All other folders examined had zero Clustert values for

all t in the range ðtinvestigation � 180days; tinvestigationÞ (see Table 2).

We also plotted histograms of the data: FolderQ and FolderR

showed cutoff cluster patterns similar to the simulated Fol-

derA shown in Fig. 2 above; the other folders did not. Our

method thus detected copying occurring approximately 2

months beforehand, and demonstrated the absence of

copying for approximately 6 months beforehand.

7. Distinguishing different forms of
recursive, nonselective access

These metrics can identify folder copying and distinguish it

from routine activity. Besides folder copying, there are other

types of recursive, nonselective access, such as searching

folders for particular files, scanning them for viruses, or even

using the POSIX ls -lR command to generate a recursive

directory listing. While we have not yet used our method to

Fig. 2 e Access timestamps of two folders after 300 days of simulated activity. Note that the cutoff cluster of FolderA, caused

by its copying on day 200, is clearly visible even 100 days later, even with a large amount of subsequent activity.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7S74

Author's personal copy

distinguish between these activities, we’re investigating doing

so via these fingerprinting characteristics:

� File access. Are all, some, or none of the file access time-

stamps updated? Copying, depending on the system,

updates either all files or only folders (see Section 2 above),

whereas virus scanning may update only certain types of

files (e.g. executable), and searching typically updates only

a subset of files having a common subsequence in their

name.

� Skipped folders and files. What types of folders and files are

skipped? Possibilities include ones beginning with periods,

NTFS Alternate Data Streams, NTFS hidden files, NTFS

system files, Windows Thumbs.db, and OS X DS_Store.

� Tree traversal method. Is the recursion performed breadth

first, depth first, or in another order?

� Sibling visit order. What order are siblings visited in? Fil-

esystem order may be the most common, but alphabetical

or other orders may be used as well. When a folder contains

both files and subfolders, is one accessed before the other?

� Speed. At what rate are folders and files accessed? Does the

rate depend on the number of entries? On the size of files? It

should be noted that a copy command may recursively

enumerate all descendants of a subfolder before copying

any of them, and so the timestamp updates may happen

much faster than the actual copying.

We should note that our informal experience is that

system activity, such as Windows Volume Snapshot Service,

as well as most (but not all) backup software, does not modify

access timestamps, and hence is irrelevant to the above

metrics. Likewise, modern file searches, which may use

indexes such as Windows Search Services (Microsoft

Corporation, 2010b), do not necessarily access the individual

folders and files being searched. We have found, however,

that graphical shells (such as Microsoft Windows Explorer)

automatically access various well known User Profile folders

(such as Documents and Settings\<User Name>) in ways

which we have not fully explored; further research is required

before applying these metrics to such folders.

Like any forensic method, cutoff clusters are a component

of an investigation, not a replacement. The absence of a cutoff

cluster provides strong evidence that copying has not taken

place. When a cutoff cluster is found, an investigator will use

other means, both digital and human, to investigate its time

and circumstances. A cutoff cluster occurring in the middle of

a workday, caused by an employee who frequently uses the

Unix command line, with no suspicious activity occurring at

the time,maymost likely be due to a Unix ls -lR or the like. The

investigator will attempt to confirm this by finding other

cutoff clusters occurring regularly in folders used by that

employee. In another case, a cluster occurring late at night

may prompt examination of the building exit records, which

show that an employee who usually leaves at 5 PM stayed late

that night for no apparent reason. Further investigation may

show that employee had just previously expressed anger at

a poor performance review. This may prompt a forensic

examination of that employee’s PC, revealing further infor-

mation as the investigation progresses.

8. Future work

We are exploring the following improvements to our method:

� We would like to perform scientific trials of our method,

evaluating how accurately it detects copying in a blinded

test on real world filesystems (see Garfinkel et al., 2009).

However, benchmarking this requires external a priori

knowledge of if and when copying took place, which the

standard corpora (such as DigitalCorpora.org) lack. In

general, this problem often makes such corpora, without

their accompanying histories, unsuitable for scientifically

testing real world phenomena.

� Our metrics are currently on a nominal scale. We’d working

to incorporate a model of expected routine filesystem

activity to yield a true probability value.

� Our metric currently assumes that folders can be repre-

sented as a tree. Many real world filesystems cannot be

represented as a tree, because they allow a folder to have

multiple parents, such as through symbolic links or

Windows 7 Libraries (Kiriaty, 2009; Microsoft Corporation,

2010c). We feel our metric could be extended to these as

well.

� Before computing themetrics, certain folders whichmay be

omitted from copying (such as hidden or permission

restricted folders) must be prefiltered from DðfÞ. Since these

folders are relatively rare, we feel we could dispense with

the need tomanually prefilter by using a fuzzy threshold for

Dbt, instead of a steep cutoff at zero.

� Finally, we think there are other activities that, although

they may fail to deterministically create identifiably unique

artifacts, nonetheless result in stochastically emergent

Table 2 eMetrics applied to field investigation. All values are over range ðtinvestigationL180days; tinvestigationÞ unless otherwise
noted. Bold indicates places where the metric indicates copying appears to have occurred.

FolderQ FolderR FolderS FolderT FolderU

A priori hypothesis Suspected of being copied Not suspected of being copied

jDðfÞj z6000 z7000 z800 z300 z50

Maximum Clustert >0.3 (at t ¼ t1) >0.9 (at t ¼ t2) 0 0 0

Indication Copied at t1 Copied at t2 Not copied Not copied Not copied

Magt >5000 (t ¼ t1) >6000 (t ¼ t2) N N N

jAbntj >50000 (t ¼ t1) >20000 (t ¼ t2) >1500 >3000 >500

Results Suspicion supported

forensically

Subsequent investigation determined

this copying was authorized

Not copied Not copied Not copied

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7 S75

Author's personal copy

patterns. We feel that stochastic forensics may enable

investigation of these otherwise silent activities.

9. Experimenting with access timestamps

In the course of our experiments, we’ve found access time-

stamp behavior to be quite mercurial. Here are the experi-

mental pitfalls we encountered and solutions.

� Systems may, for performance reasons, decline to update an

access timestamp. Since maintaining accurate access time-

stampsmay involve substantial performance costs, and isn’t

deemed system critical, systems may decline to update

them. In many systems, this is user configurable (Microsoft

Corporation, 2003a). In particular, some versions of Micro-

soft Windows ship configured to disable access timestamp

updates (Carvey, 2009, p. 205). Complicating things further,

some systems may selectively update the timestamps, for

instance updating only when the newer timestamp differs

from the previous one by a certain threshold.

The recommended solution is to check system configura-

tion and documentation before experimenting, and to

exhaustively observe system behavior under different

scenarios.

� Systems may, for performance reasons, defer writing updates of

access timestamps to the filesystem. Even when filesystems do

maintain accurate access timestamps, they may cache the

updates in memory before writing them to a disk (Microsoft

Corporation, 2003b). Thus, if a filesystem is examined before

a system has been shutdown properly, its access time-

stamps may not be accurate.

� Systems may report updated access timestamps even before

writing them to disk. In cases when updates are deferred,

queries to the system for access time may return the

updated value stored in memory, even though it is has not

yet been written to disk. Thus, an experimenter may find

one value if he queries the operating system, and another

value if he directly examines the filesystem.

� Querying a file’s access timestamp may itself update it. For

instance, we have found that using Windows Explorer to

display a file’s access timestamp will cause the access

timestamp to be updated to the current time.

These last three problems can be solved by not using the

standard operating system facilities to query access time, but

instead shutting the operating system down normally and

then directly examining thefilesystem imageusing specialized

tools. Admittedly, this makes experimentation cumbersome.

10. Conclusions

As noted, copying of data has no known artifacts. Nonethe-

less, we can reliably detect emergent patterns unique to

copying, even months after its occurrence. Statistical

mechanics, which treats objects as individually unpredictable

and looks for patterns which nonetheless emerge stochasti-

cally, gives us insight beyond the classical laws from which it

derives. Similarly, we believe stochastic forensics provides us

with means to analyze hitherto undetectable activity.

Acknowledgments

The author would like to thank Dan Farmer, Wietse Venema,

Matt Bishop, and Igor Mandel for their encouragement and

suggestions.

r e f e r e n c e s

Carvey Harlan. Windows forensic analysis DVD Toolkit. 2nd ed.
Syngress Publishing; 2009.

Carvey Harlan, Altheide Cory. Tracking USB storage: analysis of
windows artifacts generated by USB storage devices. Digital
Invest 2005;2(2):94e100.

Casey Eoghan. Digital evidence and computer crime. Orlando, FL,
USA: Academic Press, Inc.; 2004.

Chow KP, Law Frank YW, Kwan Michael YK, Lai Pierre K Y. The
Rules of time on NTFS file system. Pages 71e85 of: SADFE ’07.
In: Proceedings of the second international workshop on
systematic approaches to digital forensic engineering.
Washington, DC, USA: IEEE Computer Society; 2007.

CSIandFBI. 2003computercrimeandsecuritysurvey.TechRept2003.
Farmer Dan. What are MACtimes? Dr Dobb’s J Software Tools

2000;25(10):70e4. 68.
Farmer Dan, Venema Wietse. Forensic discovery. AddisonWesley

Professional; 2004.
Ferguson Michael. File system numbers, http://www.cs.cornell.

edu/courses/cs614/2002sp/Fileppt; 2002 [accessed 03.09.10].
Free Software Foundation Inc.. GNU coreutils implementation,

http://ftp.gnu.org/gnu/coreutils/coreutils-8.4.tar.gz; 2010
[accessed 03.09.10].

Garfinkel Simson, Farrell Paul, Roussev Vassil, Dinolt George.
Bringing science to digital forensics with standardized
forensic corpora. In: Proc. 9th annual digital forensic research
workshop (DFRWS); 2009. August.

Gribble Steven D, Manku Gurmeet Singh, Roselli Drew, Brewer Eric
A, Gibson Timothy J, Miller Ethan L. Self-similarity in file
systems. SIGMETRICS Perform. Eval Rev 1998;26(1):141e50.

Hillstrom Kevin, Hillstrom Laurie Collier. Employee theft. In:
Hillstrom Kevin, Hillstrom Laurie Collier, editors. Gale
encyclopedia of small business. 2nd ed. Farmington Hills, MI,
USA: Gale Group/Thomson Learning; 2002.

Kiriaty Yochay. Understanding windows 7 libraries, http://
windowsteamblog.com/blogs/developers/archive/2009/04/06/
understanding-windows-7-libraries.aspx; 2009 [accessed 03.
09.10].

Liu Yali, Corbett Cherita, Chiang Ken, Archibald Rennie,
Mukherjee Biswanath, Ghosal Dipak. SIDD: a framework for
detecting sensitive data exfiltration by an insider attack.
Hawaii Int Conf Syst Sci 2009;0:1e10.

Microsoft Corporation. Windows server 2003 Resource Kit
Registry Reference: NtfsDisableLastAccessUpdate, http://
technet.microsoft.com/en-us/library/cc758569(ws.10).aspx;
2003a [accessed 03.09.10].

Microsoft Corporation. Windows server 2003 technical Reference:
how NTFS Works, http://technet.microsoft.com/en-us/library/
cc781134(ws1.0).aspx; 2003b [accessed 03.09.10].

Microsoft Corporation. Microsoft Developer network online
documentation: copyfile Function, http://msdn.microsoft.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7S76

Author's personal copy

com/en-us/library/aa363851(VS.85).aspx; 2010a [accessed 03.
09.10].

Microsoft Corporation. Microsoft developer network: windows
search overview, http://msdn.microsoft.com/en-us/library/
aa965362(v¼vs.85).aspx; 2010b [accessed 04.10.11].

Microsoft Corporation. Windows Developer Center: learn about
windows 7: libraries, http://msdn.microsoft.com/en-us/
windows/ee65582590.aspx; 2010c [accessed 03.09.10].

Sun Microsystems Inc.. Solaris mv command implementation,
http://src.opensolaris.org/sourse/xref/onnv/onnv-gate/usr/
src/cmd/mv/mv.c; 2009a [accessed 03.09.10].

Sun Microsystems Inc.. Solaris writefile implementation, http://src.
opensolaris.org/sourse/xref/onnv/onnv-gate/usr/src/lib/
libcmdutils/common.writefile.c; 2009b [accessed 03.09.10].

Venema Wietse. File recovery techniques. Dr Dobb’s J Software
Tools 2000;25(12):76e80. 74.

Vogels, Werner. 1999. File system usage in Windows NT 4.0. Pages
93e109 of: SOSP ’99: Proceedings of the seventeenth ACM

symposium on Operating systems principles. New York, NY,
USA: ACM.

Wikipedia. Pareto distribution, http://en.wikipedia.org/wiki/
Pareto_distribution; 2010 [accessed 03.09.10].

Yu Yang, Chiueh Tzi-cker. Display-only file server: a solution
against information theft due to insider attack. In: Proceedings
of the 4th ACM workshop on digital rights management. DRM
’04. New York, NY, USA: ACM; 2004.

Jonathan Grier has been an independent security consultant for
over a decade. He has conducted forensic investigations, per-
formed security audits, taught secure application development,
and advised clients on data security. Jonathan has consulted for
clients in health care, telecommunications, construction, and
professional services. He has forensically investigated employee
dishonesty, network break-ins, data theft and industrial espio-
nage. Jonathan’s current research focus is devising new forensic
methods for challenging investigations.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 7 1eS 7 7 S77

